

MONTANA RESOURCES LLP

DATA REPORT FOR TSP AND DUSTFALL MONITORING STATIONS IN BUTTE, MONTANA QUARTER 1, 2024

Prepared for:

Montana Resources

Montana Resources LLP 600 Shields Avenue Butte, MT 59701

Prepared by:

Bison Engineering, Inc. 3143 E. Lyndale Avenue Helena, MT 59601 (406) 442-5768 http://www.bison-eng.com

June 26, 2024

CERTIFICATION OF DATA INTEGRITY

Bison Engineering, Inc. certifies the data in this report is an accurate summary of the air quality and meteorological conditions measured at the Greeley School ambient monitoring site. Every reasonable effort was made to obtain accurate and representative data and to comply with the procedures set forth in the project-specific *Quality Assurance Project Plan (QAPP), State of Montana Ambient Air Monitoring Program Quality Assurance Project Plan (April 2013)*, and the Environmental Protection Agency's *Volume II: Ambient Air Quality Program (January 2017)*

Preparer:	Steven R. Heck
Signature:	Steven R Heck
Title:	Meteorologist
Date:	<u>June 26, 2024</u>
Reviewer:	Harold W. Robbins
Signature:	Harold Rolli
Title:	Executive Manager
Date:	June 30, 2024

TABLE OF CONTENTS

CERTIFIC	ATION OF DATA INTEGRITY	ii
10	INTRODUCTION	1
2.0	TSP SAMPLING DATA	
3.0	DUSTFALL SAMPLING DATA	7
4.0	CHEMICAL ANALYSIS DATA - TSP SAMPLES	
5.0	CHEMICAL ANALYSIS DATA - DUSTFALL SAMPLES	
6.0	CALIBRATION DATA	
7.0	QUARTERLY AUDIT/CALIBRATION RESULTS	
8.0	DATA COMPLETENESS	
9.0	COMPARISON TO AMBIENT AIR QUALITY STANDARDS	

LIST OF TABLES

Table 1: Summary of TSP Monitoring Data for Quarter 1, 2024	6
Table 2: Summary of Dustfall Monitoring Data for Quarter 1, 2024	7
Table 3a: Summary of Analytical Results – TSP Pine Street	10
Table 3b: Summary of Analytical Results – TSP Walnut Street	10
Table 3c: Summary of Analytical Results – Blanks	11
Table 4a: Summary of Airborne Trace Element Concentrations – TSP Pine Street	12
Table 4b: Summary of Airborne Trace Element Concentrations – TSP Walnut Street	13
Table 5: Summary of Airborne Trace Element Concentration Guidelines (ng/m ³)	14
Table 6a: Dustfall Results for January 2 – February 1, 2024	16
Table 6b: Dustfall Results for February 1 – February 29, 2024	17
Table 6c: Dustfall Results for February 29 – April 1, 2024	18
Table 7: Summary of Montana Resources – Pine St and Walnut St Sites Calibration/ Aud	it
Activities and Acceptance Criteria	19
Table 8: Summary of Quarter 1, 2024 Calibration Verification Results	20
Table 9: Quarter 1, 2024 Audit Results	23
Table 10: Quarterly Data Completeness Summary – Filter Analysis Data	26
Table 11: Summary of Airborne Concentration vs. NAAQS	28

LIST OF FIGURES

Figure 1:	Butte Ambient Monitoring Locations	3
i igui e il		-

APPENDICES

Appendix A: Gravimetric Analysis Data Appendix B: Laboratory Analysis Results – TSP Appendix C: Laboratory Analysis Results – Dustfall Appendix D: Common Guidelines for Airborne Contaminants Appendix E: Calibrations Appendix F: Calibration Standard Certification Sheets

1.0 INTRODUCTION

Particulate monitoring has been conducted in the Greeley School area for many years, since the days of the Anaconda Company operation during the 1970s. Montana Department of Environmental Quality (MDEQ) and Butte-Silver Bow (BSB) County are currently performing the following monitoring:

- Continuous monitoring for PM_{10} using a Met One Model 1020 Beta Attenuation Monitor (BAM-1020).
- Continuous monitoring for PM_{2.5} using a second Met One BAM-1020.
- Episodic monitoring for PM_{2.5} using a BGI Model PQ-200 sampler. This sampler collects particulate matter on a filter over a 24-hour period, which is subsequently analyzed gravimetrically to determine the average airborne PM_{2.5} concentration during the sampling period. The filter is then analyzed by an EPA laboratory for trace elements and mineralized compounds. This episodic sampling is performed every six days, concurrent with EPA's national one-in-six-day sampling schedule.
- The Greeley School site includes meteorological instruments that measure wind speed, wind direction and temperature.

MDEQ/BSB's monitoring provides continuous, real-time hourly $PM_{2.5}$ and PM_{10} concentrations, as well as $PM_{2.5}$ chemical composition data. In March 2019 and at Montana Resources' (MR) request, Bison Engineering Inc. (Bison) installed additional collocated monitoring equipment at the Greeley School:

- Total Suspended Particulate Sampler: A Met One E-Sampler that continuously measures hourly total suspended particulate (TSP) concentrations using a nephelometric technique that relates light scattering to ambient particulate concentration. Additionally, the sampler includes a filter that is analyzed for total particulate mass and trace elements. Prior to this study, no ongoing TSP monitoring was being performed,
- PM₁₀ Particulate Sampler: A BGI Model PQ-200 sampler that collects 24-hour inhalable particulate (PM₁₀) samples on a filter, concurrent with the EPA one-in-six-day sampling schedule. The filter is analyzed for particulate mass and for selected trace elements. The MDEQ BAM-1020 that is used for PM₁₀ hourly monitoring does not produce a filter suitable for chemical analysis.

The Bison data have been presented in quarterly reports since the first quarter of 2019. With few exceptions, the trace element data have shown airborne concentrations below the Guideline values shown in Section 4.0 of this report. However, citizens in the area between the Greeley school and MTR have expressed concerns about airborne particulate and the

associated trace element concentrations, as well as the composition of settled dust that residents have observed.

In response, MTR contracted Bison to perform additional monitoring as described below:

- BGI Model PQ-200 samplers are being used to collect 24-hour TSP samples on filters, concurrent with the EPA one-in-six-day sampling schedule. The filters are analyzed for particulate mass and for selected trace elements. These samplers were deployed at 2616 Pine Street and 1910 Walnut Street, with the first samples collected on July 11, 2023.
- Monthly Dustfall sampling was initiated on August 4, 2023, at the Pine Street and Walnut Street sites, and also at the existing Greeley School site. This sampling involves exposing a 15 cm diameter bucket to ambient conditions for a period of approximately 30 days, and then analyzing the collected particulate for total mass and trace elements. From these results, monthly particulate and trace element deposition rates are calculated.
- All sample collection duties are performed by Bison. Gravimetric analysis of TSP filters is also performed by Bison, while chemical analysis of those filters is performed by the Energy Laboratory Billings, MT facility. Both gravimetric and chemical analyses of the Dustfall samples are performed by the Energy Laboratory Helena facility.

Monitoring locations are depicted in Figure 1.

Figure 1: Butte Ambient Monitoring Locations

2.0 TSP SAMPLING DATA

The National Ambient Air Quality Standards (NAAQS) for TSP were first promulgated in 1971. The TSP standards were superseded by PM₁₀ standards in 1987, and additional particulate standards have been enacted since. Although no longer a criteria pollutant, TSP monitoring is appropriate for the objectives of the expanded monitoring since residents' concerns arose from visual observations of *total* particulate, rather than a particular size fraction.

Normally, TSP samples are collected for a period of 24 hours on the National EPA 6th-day sampling schedule. However, starting in December it was discovered that snow easily blows into the BGI PQ-200 TSP sampling heads and accumulates on the sampling filters – to the extent that it compromises the integrity of the sample. Additionally, in early January it was discovered that sufficient windblown snow accumulation on the filter could cause a sampling failure due to an overpressure error. Starting in January 2024, samples were scheduled for dates when snow was not expected. They were scheduled as close to the National 6th-day schedule as possible but constrained by expected weather conditions. Similarly, sample retrieval was often expedited to minimize the possibility of windblown snow accumulating following exposure.

All TSP samples were collected as planned during the first quarter of 2024, with the following exceptions:

- Both samplers were set up to run on January 14 but failed to run successfully due to extreme cold.
- The sample collection scheduled for February 19 at Pine St failed to initiate due to a programming error. A make-up sample was collected on March 3.
- The Walnut St sample for February 24 overran due to a faulty Main PC board, which failed to stop sampling as scheduled. This resulted in a sampling duration of over 35 hours.¹

Table 1 summarizes the TSP data collected during the first quarter of 2024. The average TSP concentrations were 38 μ g/m³ at both the Pine St and Walnut St sites. This is similar to the third quarter of 2023, when average TSP concentrations at both locations were almost equal.² The maximum TSP concentrations of 112 μ g/m³ at Pine St and 113 μ g/m³ at Walnut St were virtually identical, although they occurred on different dates.

¹ Since late December operation of the Walnut St TSP sampler has been accomplished using an external programmable timer. This is because of a defect in the sampler's main PC board that caused the sampler to continue running beyond its scheduled shutoff time. The PC board was replaced in early December, to no avail. A second PC board was obtained in February 2024 and set up to control sample collection on February 24. Unfortunately, the new board failed to shut the sampler off as scheduled. The remaining Walnut St sampling events for the first quarter of 2024 were controlled using the external timer.

 $^{^2}$ During the fourth quarter of 2023 average TSP concentrations at Pine St and Walnut St were 63 $\mu g/m^3$ and 46 $\mu g/m^3$, respectively. However, many samples at the two sites were not collected over concurrent periods.

The quarterly TSP averages were 51 percent of the historical annual standard $(75 \ \mu g/m^3)^3$ at both sites. The maximum daily values were 63 percent of the historical 24-hour standard $(260 \ \mu g/m^3)^4$ at both sites.

Data used to calculate average TSP concentrations from gravimetric analysis are presented in Appendix A. Chemical analysis results for the TSP filters are presented in Section 4.0 of this report.

³ Both the annual and 24-hour TSP standards were revoked in 1987. The annual standard was calculated as a geometric mean of all daily values in a single year. The 24-hour standard was determined as the 2nd highest recorded value per year (on an assumed one-day-in-six schedule)

⁴ Ibid.

Pine Street		Walnut Street				
Sample Collection Date (2024)	TSP ¹ (μg/m ³)	Sample Collection Date (2024) ²	TSP ¹ (μg/m ³)			
Jan 01	66	Jan 01	43			
Jan 07	75	Jan 07	113			
Jan 14 ³	ND	Jan 14 ³	ND			
Jan 22	29	Jan 22	41			
Jan 25	30	Jan 25	27			
Jan 31	38	Jan 31	45			
Feb 05	14	Feb 05	21			
Feb 11	36	Feb 11	37			
		Feb 19	35			
Feb 24	22	Feb 24 @ 0000 – Feb 25 @ 1125	10			
Feb 28	12	Feb 28	14			
Mar 03 ⁴	22					
Mar 07	112	Mar 07	49			
Mar 14	23	Mar 14	27			
Mar 19	39	Mar 19	35			
Mar 27	18	Mar 27	31			
Average	38	Average	38			
Single Day Maximum	112	Single Day Maximum	113			
Historical 24-Hour Standard ⁵		260				
Historical Annual Standard ⁶		75				

 Table 1: Summary of TSP Monitoring Data for Quarter 1, 2024

¹All values at local temperature and pressure (LTP).

²Samples were collected from midnight to midnight (\pm 10 minutes) on a single calendar day unless noted otherwise.

³Sampling events scheduled for Jan 14 failed due to extreme cold.

⁴Makeup run in lieu of unsuccessful sample collection on Feb 19.

⁵ Ibid.

⁶ Ibid.

3.0 DUSTFALL SAMPLING DATA

Dustfall monitoring was initiated at the Walnut, Pine and Greeley sites on August 4, 2023. Samples were collected over the following time periods at each site during the first quarter of 2024:

- January 2 February 1
- February 1 February 29
- February 29 April 1

Samples were collected using ASTM Method D1739-98R17. Each sampling event was started by placing clean, dry dustfall buckets at each site. They were then exposed to ambient conditions for approximately 30 days. No water was added to the buckets prior to deployment, although they collected any rain or snow that fell during the sampling period. Following collection, they were submitted to the Energy Lab Helena facility. Samples were visually inspected for insects or other non-dustfall detritus. Wet masses of each sample were collected, as received. Samples with insects present were passed through a No. 10 (2mm) sieve, removing the insects but allowing the dust and liquid to pass through. Sieves were rinsed with laboratory reagent water to ensure no dust was lost on the sieve. Samples were then air dried on a clean non-porous plastic to remove moisture. The dry weight of each sample was then recorded using the plastic as a tared mass. Collected dust was transferred to a digestion vessel using digestion reagents to ensure all dust was removed from the plastic; and digested for total metals analysis.

Table 2 summarizes the dustfall monitoring results for the first quarter of 2024. All dustfall results were below the Montana Dustfall standard of $10 \text{ g/m}^2/30 \text{ days}$.

Sample Collection Date (2024)	Greeley School DF (g/m ² /30 days)	Pine Street DF (g/m ² /30 days)	Walnut Street DF (g/m ² /30 days)		
Jan 2 – Feb 1	1.4	3.2	2.8		
Feb 1 – Feb 29	2.5	2.1	3.8		
Feb 29 – Apr 1	4.6	4.2	5.3		
Maximum	4.6	4.2	5.3		
Montana Standard ⁷	10				

Table 2:	Summary of Dustfall	Monitoring Data	for Ouarter 1.2	2024
	building of Dustian	Promitor ing Duta	IOI Qualter 1,2	

Chemical analysis results for the Dustfall samples are presented in Section 5.0 of this report.

⁷ ARM 17.8.220

4.0 CHEMICAL ANALYSIS DATA – TSP SAMPLES

Following gravimetric analysis, the particulate samples were submitted to Energy Laboratories, Inc. (ELI) in Billings, Montana, for elemental analysis including arsenic, cadmium, copper, lead, manganese, molybdenum and zinc. This analyte list may be subject to modification as results from this monitoring are obtained, and as other information becomes available.

All TSP samples were digested and then analyzed by ICP-MS using EPA Method E200.8. Laboratory results are presented in Appendix B and are reported in units of micrograms (μ g) per filter. Fourteen TSP samples collected from both the Walnut Street and Pine Street sites during the first quarter were analyzed for trace elements, as well as four Field Blanks and four filter lot blanks (Lab Blanks).

Tables 3a and 3b summarize the total particulate mass and ELI analytical results for samples collected during the first quarter. Detectable results were always obtained for copper, and often were obtained for manganese, molybdenum, lead and zinc. Results for arsenic were all non-detectable; cadmium was also non-detectable except for one sample from Pine St. Table 3c shows the Field Blank and Lab Blank results associated with the first quarter samples. The bottom row of Table 3c shows the range of laboratory Method Blank (MB) Method Detection Limits (MDL) during the quarter. Field Blank, Lab (filter) Blank and MB concentrations for the first quarter were all non-detectable, except for the following:

• The Lab Blank result for copper in analysis batch B24021462 was 0.35 μ g/filter; this was barely above the MB MDL of 0.3 μ g/filter.

Tables 4a and 4b show the calculated airborne concentration of each trace element over the indicated sampling periods. To facilitate data interpretation, the number of leading zeroes in the results has been minimized by expressing results in units of *nanograms* (ng) per cubic meter rather than micrograms.

- All individual trace element concentrations for the Pine Street site were below suggested Guideline values. The closest approach to a Guideline was for manganese, which reached 30 ng/m³ on January 7; this is 60% of the Guideline value of 50 ng/m³. All other trace element maxima were less than 15% of their respective Guideline values.
- All individual trace element concentrations for the Walnut Street site were also below suggested Guideline values. The closest approach to a Guideline was for manganese, which reached 42 ng/m³ on January 7; this is 84% of the Guideline value of 50 ng/m³. All other trace element maxima were less than 10% of their respective Guideline values.

Table 5 shows the sources of the "Guideline" values used for these analyses, and their derivations.⁸ Additionally, Table 5 shows the approximate airborne concentration corresponding to each MDL range listed in Table 4c.

Laboratory results are included in Appendix B.⁹ A detailed table showing commonly accepted values from regulatory agencies and reputable private organizations is provided in Appendix D.

⁸ The guideline values were updated (starting with the Greeley School 4th quarter report 2020) to be consistent with those from the Montana Department of Public Health and Human Services (MDPHHS). Guidelines for copper and molybdenum are lower than those used in previous quarterly reports. Although MDPHHS suggested a higher guideline for manganese, the lower previously reported value was retained. Guidelines for arsenic, cadmium, lead and zinc are unchanged.

⁹ Laboratory report B24021462 includes samples designated Field Blank 2 and Field Blank 3. These are filters that were left in the samplers from January 8 to January 16, during which time they were impacted by windblown snow on multiple occasions. They were analyzed as a matter of curiosity, but do not represent true Field Blanks. The sample designated Field Blank 1 was a true Field Blank obtained in the normal manner, and those results are shown in Table 3c.

	PART MASS	As	Cd	Cu	Mn	Мо	Ph	Zn
DATE	(μg)	(μg)	(μg)	(μg)	(μg)	(μg)	(μg)	2m (μg)
01/01	1593	ND	0.013	4.2	0.55	0.13	0.19	1.2
01/07	1808	ND	ND	2.9	0.72	0.26	0.14	0.94
01/22	696	ND	ND	2.5	0.24	0.27	ND	0.82
01/25	733	ND	ND	2.0	0.33	ND	0.091	0.94
01/31	921	ND	ND	2.3	0.37	0.084	0.12	ND
02/05	341	ND	ND	1.6	ND	0.13	ND	ND
02/11	869	ND	ND	1.4	0.38	0.11	ND	0.81
02/24	518	ND	ND	1.3	0.24	0.095	ND	ND
02/28	289	ND	ND	0.51	ND	ND	ND	ND
03/03	528	ND	ND	1.1	ND	ND	ND	ND
03/07	2694	ND	ND	5.1	0.60	0.34	0.25	0.72
03/14	557	ND	ND	0.90	ND	ND	0.072	ND
03/19	930	ND	ND	3.1	0.39	ND	0.18	0.32
03/27	435	ND	ND	0.67	ND	ND	0.060	ND

 Table 3a:
 Summary of Analytical Results - TSP Pine Street

All values expressed as micrograms per filter. ND denotes not detected.

	PART MASS	As	Cd	Cu	Mn	Мо	Pb	Zn
DATE	(µg)	(µg)	(µg)	(µg)	(µg)	(µg)	(µg)	(µg)
01/01	1024	ND	ND	2.0	0.30	0.095	0.11	1.3
01/07	2683	ND	ND	3.0	1.0	0.31	0.27	1.4
01/22	966	ND	ND	2.4	0.33	0.14	ND	1.0
01/25	638	ND	ND	0.82	0.22	ND	ND	0.91
01/31	1071	ND	ND	2.0	0.36	0.094	0.13	0.97
02/05	502	ND	ND	1.2	ND	0.18	ND	ND
02/11	871	ND	ND	1.4	0.34	0.081	0.090	ND
02/19	822	ND	ND	1.6	0.37	0.96	0.097	1.3
02/24	337	ND	ND	0.32	0.20	ND	ND	ND
02/28	322	ND	ND	0.41	ND	ND	ND	ND
03/07	1156	ND	ND	1.8	0.40	0.079	0.16	0.38
03/14	639	ND	ND	0.62	ND	ND	0.083	ND
03/19	839	ND	ND	1.3	0.52	ND	0.18	0.48
03/27	741	ND	ND	0.55	0.22	ND	0.076	ND

All values expressed as micrograms per filter. ND denotes not detected.

DATE	PART MASS (μg)	As (µg)	Cd (µg)	Cu (µg)	Mn (µg)	Мо (µg)	Рb (µg)	Zn (μg)
01/08-FFB	34	ND	ND	ND	ND	ND	ND	ND
03/01-LB	0	ND	ND	0.35	ND	ND	ND	ND
03/07-LB	0	ND	ND	ND	ND	ND	ND	ND
02/04-FFB	12	ND	ND	ND	ND	ND	ND	ND
03/14-LB	-1	ND	ND	ND	ND	ND	ND	ND
03/04-FFB	13	ND	ND	ND	ND	ND	ND	ND
05/08-LB	5	ND	ND	ND	ND	ND	ND	ND
03/20-FFB	6	ND	ND	ND	ND	ND	ND	ND
Lab Method Blank MDL Range		0.06- 0.08	0.006- 0.009	0.2- 0.3	0.2	0.005- 0.07	0.04- 0.09	0.3- 0.8

Table 3c: Summary of Analytical Results – Blanks

All values expressed as micrograms per filter. ND denotes not detected. LB denotes laboratory filter blank. FFB denotes field filter blank.

	Sample Volume	As	Cd	Cu	Mn	Мо	Pb	Zn
DATE	(m ³)	(ng/m ³)						
01/01	24.05	ND	0.54	170	23	5.4	7.9	50
01/07	24.05	ND	ND	120	30	11	5.8	39
01/22	24.05	ND	ND	100	10	11	ND	34
01/25	24.05	ND	ND	83	14	ND	3.8	39
01/31	24.05	ND	ND	96	15	3.5	5.0	ND
02/05	24.05	ND	ND	67	ND	5.4	ND	ND
02/11	24.05	ND	ND	58	16	4.6	ND	34
02/24	24.05	ND	ND	54	10	4.0	ND	ND
02/28	24.05	ND	ND	21	ND	ND	ND	ND
03/03	24.05	ND	ND	46	ND	ND	ND	ND
03/07	24.05	ND	ND	210	25	14	10	30
03/14	24.05	ND	ND	37	ND	ND	3.0	ND
03/19	24.05	ND	ND	130	16	ND	7.5	13
03/27	24.05	ND	ND	28	ND	ND	2.5	ND
Mean (ng	(/m³)*	1.5	0.20	87	13	4.5	4.1	24
Guideline (n	g/m³) **	15	10	2,000	50	400	150	47,619

Table 4a:Summary of Airborne Trace Element Concentrations - TSPPine Street

* Rather than treat non detectable (ND) data as zero, the mean was calculated using ½ of the detectable value (Table 5) for the parameter and date in question.

** The guideline values, except lead (Pb), are applicable to a lifetime or chronic exposure. The lead (Pb) guideline is an ambient air quality standard applicable to a 3-month average. The quarterly average lead concentration of 4.1 ng/m³ was 3 percent of the guideline value; non-detect lead concentrations were set at ½ of the lead detection limit for the sample group in question.

	Sample Volume	As	Cd	Cu	Mn	Мо	Ph	7n
DATE	(m ³)	(ng/m^3)	(ng/m ³)	(ng/m ³)	(ng/m^3)	(ng/m ³)	(ng/m ³)	(ng/m ³)
01/01	23.71	ND	ND	84	13	4.0	4.6	55
01/07	23.71	ND	ND	127	42	13	11	59
01/22	23.71	ND	ND	101	14	5.9	ND	42
01/25	23.71	ND	ND	35	9.3	ND	ND	38
01/31	23.71	ND	ND	84	15	4.0	5.5	41
02/05	23.71	ND	ND	51	ND	7.6	ND	ND
02/11	23.71	ND	ND	59	14	3.4	3.8	ND
02/19	23.71	ND	ND	67	16	40	4.1	55
02/24	35.47	ND	ND	9.0	5.6	ND	ND	ND
02/28	23.71	ND	ND	17	ND	ND	ND	ND
03/07	23.71	ND	ND	76	17	3.3	6.7	16
03/14	23.71	ND	ND	26	ND	ND	3.5	ND
03/19	23.71	ND	ND	55	22	ND	7.6	20
03/27	23.71	ND	ND	23	9.3	ND	3.2	ND
Mean (ng	(/m³) *	1.5	0.17	58	14	6.1	4.2	29
Guideline (r	ng/m³) **	15	10	2,000	50	400	150	47,619

Table 4b:Summary of Airborne Trace Element Concentrations - TSPWalnut Street

* Rather than treat non detectable (ND) data as zero, the mean was calculated using ½ of the detectable value (Table 5) for the parameter and date in question.

**The guideline values, except lead (Pb), are applicable to a lifetime or chronic exposure. The lead (Pb) guideline is an ambient air quality standard applicable to a 3-month average. The quarterly average lead concentration of 4.2 ng/m³ was 3 percent of the guideline value; non-detect lead concentrations were set at ½ of the lead detection limit for the sample group in question.

Analyte	Dose/ Risk ^A	Source	Description	Time Period	Detectable TSP ^D	
Arsenic (inorganic)	15	EPA / DPHHS ^F	RfC ^B	Lifetime	2.50-3.33	
Codmium	10	ATSDR / DPHHS ^F	Non-cancer / CV ^F	Chronic		
Caumum	200	IRIS	Cancer	Chronic	0.25-0.58	
Copper	2,000	DPHHS ^F / Michigan DEQ	RfC ^B	Chronic	8.33-12.5	
Lead	150	EPA / ATSDR / DPHHS ^F	National Ambient Air Quality Standard ^c	3-month	1.67-3.75	
Manganese	50	EPA	RfC ^B	Lifetime	8.33	
Molubdonum	11,905 (=500,000/42) ^E	CAL/OSHA, ACGIH	CAL/OSHA, ACGIH	Chronic ^E	0.21.2.02	
Molybdenum	400	DPHHS ^F / Michigan DEQ	CV	Chronic	0.21-2.92	
Zinc	47,619 (=2,000,000/42) ^E	ACGIH TLV	ACGIH TLV	Chronic ^E	12.5-33.3	

Table 5: Summary of Airborne Trace Element Concentration Guidelines (ng/m³)

^A See Appendix D for definitions and listing of dose and risk assessment values reviewed to produce this summary table.

^B RfC = Reference Concentration (EPA) is an estimate (with uncertainty added) of a continuous inhalation exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime.

^c This standard is based on a three-month average.

^D Based on 24-hour sampling period and total sample volume of 24 m³. Range reflects maximum and minimum laboratory MDLs during Q1 2024.

^E This value derived by dividing the OSHA/NIOSH exposure limit by 42. This was done to include a factor of 10 to account for a general population, not just healthy adults and then including another factor of 4.2 to include a year-long exposure as opposed to 8 hours per day, 5 days a week and 52 weeks per year.

F Reference information from letter and analysis by DPHHS (regarding Greeley School ambient data) to Butte-Silver Bow Health Department dated October 28,2020.

EPA = Environmental Protection Agency

ATSDR = Agency for Toxic Substances & Disease Registry

CV = "Comparison Value" – a term used by DPHHS (10/28/20 letter) to indicate an ATSDR (or other) guideline or reference value

DPHHS = Montana Department of Health and Human Services

RfC = Reference Concentration (see above)

RSL = EPA Regional Screening Levels (https://www.epa.gov.gov/risk/regional-screening-levels-rsls-generic-tables)

OSHA = Occupational Safety and Health Administration

ACGIH = American Congress of Governmental Industrial Hygienists

NIOSH= National Institute of Occupational Safety and Health

TLV = Threshold limit value

5.0 CHEMICAL ANALYSIS DATA – DUSTFALL SAMPLES

After each Dustfall sample was prepared as described in Section 3.0, the remaining particulate mass was transferred to a digestion vessel using digestion reagents to ensure that all dust was removed from the plastic and digested for total metals analysis. The digestate was analyzed using EPA Method SW6020 "Inductively Coupled Plasma - Mass Spectrometry."

Laboratory results are presented in Appendix C and are reported in units of milligrams per kilogram (mg/kg) in the captured particulate, along with the total dried particulate mass. Six Dustfall samples collected from the Walnut Street, Pine Street and Greeley School sites during the first quarter of 2024 were analyzed for trace elements. Three Field Blanks also were analyzed.

Tables 6a through 6c present the Dustfall analysis data for the first quarter. Each Table shows the sample collection information, amount of particulate captured from each sample, and the concentrations of seven parameters in the particulate mass on a mg/kg basis. Finally, each table shows a calculated deposition rate for each parameter in units of milligrams per square meter per 30-days (g/m²/30-days).

The 30-day total particulate deposition rates were all below the MAAQS of 10 g/m²/30-days.¹⁰ The highest observed deposition rate was 5.3 g/m²/30-days at the Walnut Street site between February 29 and April 1, 2024.

¹⁰ It should be noted that the sampling procedure and analysis were conducted with quality in mind, they were not necessarily conducted in strict accordance with the specific methods outlined in the Montana standard (ARM17.8.220).

Table 6a: Dustfall Results for January 2 - February 1, 2024

	Greeley School	Pine Street	Walnut Street	Field Blank
Start Date	01/02/24	01/02/24	01/02/24	
End Date	02/01/24	02/01/24	02/01/24	
Days of Exposure	30	30	30	
Dry Particulate Weight (g)	0.0243	0.0566	0.0499	0.0038
Dustfall (g/m²/30-days)	1.4	3.2	2.8	0.2

Sample Collection Information

Trace Element Concentration in Particulate (mg/kg)

Analyte	Greeley School	Pine Street	Walnut Street	Field Blank
As	29	15	11	ND
Cd	7	2	2	ND
Cu	4,260	3,030	2,670	87
Pb	152	73	73	ND
Mn	562	341	447	590
Мо	4,280	1,410	1,320	ND
Zn	762	474	506	ND

Trace Element Deposition Rate (mg/m²/30-days)

Analyte	Greeley School	Pine Street	Walnut Street	Field Blank
As	0.04	0.05	0.03	ND
Cd	0.01	0.01	0.01	ND
Cu	5.86	9.71	7.54	0.02
Pb	0.21	0.23	0.21	ND
Mn	0.77	1.09	1.26	0.13
Мо	5.89	4.52	3.73	ND
Zn	1.05	1.52	1.43	ND

Table 6b: Dustfall Results for February 1 – February 29, 2024

	Greeley School	Pine Street	Walnut Street	Field Blank
Start Date	02/01/24	02/01/24	02/01/24	
End Date	02/29/24	02/29/24	02/29/24	
Days of Exposure	28	28	28	
Dry Particulate Weight (g)	0.0411	0.0349	0.0629	0.0000
Dustfall (g/m²/30-days)	2.5	2.1	3.8	0.0

Sample Collection Information

Trace Element Concentration in Particulate (mg/kg)

Analyte	Greeley School	Pine Street	Walnut Street	Field Blank
As	10	25	15	ND
Cd	2	3	2	ND
Cu	2,120	4,150	2,440	0.3
Pb	78	108	87	ND
Mn	344	515	400	ND
Мо	1,390	2,740	722	ND
Zn	382	675	432	ND

Trace Element Deposition Rate (mg/m²/30-days)

Analyte	Greeley School	Pine Street	Walnut Street	Field Blank
As	0.02	0.05	0.06	ND
Cd	0.00	0.01	0.01	ND
Cu	5.28	8.78	9.31	0.00
Pb	0.19	0.23	0.33	ND
Mn	0.86	1.09	1.53	ND
Мо	3.46	5.80	2.75	ND
Zn	0.95	1.43	1.65	ND

Table 6c: Dustfall Results for February 29 - April 1, 2024

	Greeley School	Pine Street	Walnut Street	Field Blank
Start Date	02/29/24	02/29/24	02/29/24	
End Date	04/01/24	04/01/24	04/01/24	
Days of Exposure	32	32	32	
Dry Particulate Weight (g)	0.0860	0.0800	0.1000	0.0003
Dustfall (g/m²/30-days)	4.6	4.2	5.3	0.0

Sample Collection Information

Trace Element Concentration in Particulate (mg/kg)

Analyte	Greeley School	Pine Street	Walnut Street	Field Blank
As	12	25	15	ND
Cd	1	3	2	ND
Cu	1,620	3,050	1,890	0.3
Pb	62	100	74	ND
Mn	325	507	440	ND
Мо	1,070	2,100	714	ND
Zn	387	610	447	ND

Trace Element Deposition Rate (mg/m²/30-days)

Analyte	Greeley School	Pine Street	Walnut Street	Field Blank
As	0.05	0.11	0.08	ND
Cd	0.00	0.01	0.01	ND
Cu	7.39	12.94	10.03	0.00
Pb	0.28	0.42	0.39	ND
Mn	1.48	2.15	2.33	ND
Мо	4.88	8.91	3.79	ND
Zn	1.77	2.59	2.37	ND

6.0 CALIBRATION DATA

Calibration checks of the BGI TSP samplers are performed in at least two months of each quarter. In the third month, an audit is performed by a different person using different calibration standards. Routine monthly verification checks were performed on the TSP samplers on January 29, February 22 and March 15.¹¹ Additional verification checks were performed on the Walnut Street sampler on February 22 when the malfunctioning main PC board was replaced.

Table 7 summarizes the verification checks performed each month and the applicable acceptance criteria. In the event of unsatisfactory results, corrective actions are performed as specified in the rightmost column. Table 8 summarizes the results of the calibration checks performed during the first quarter, as well as any corrective actions. Detailed verification check results are shown in Appendix E. Appendix F presents certifications for flow calibration standards used during the quarter.

Table 7: Summary of Montana Resources – Pine St and Walnut St Sites Calibration/ Audit Activities and Acceptance Criteria

Activity	Acceptance	e Criteria / Actions	
TSP Sampler Calibration			
Checks			
Flow Verification	±4%	Multipoint recalibration if flow error exceeds ±2%	
Leak Check	Investigate / correct if vacuum drop exceeds 4 cm of water in 2		
	minutes		
Temperature Verification	±2.0°C	Multipoint recalibration if error exceeds ±2.0°C	
Pressure	±10 mmHg	Adjust calibration if error exceeds ±10 mmHg	
Other			
TSP Inlet Head	Disassemble and clean		

¹¹ The calibration checks performed on April 11, 2024, also are shown to demonstrate data validity through the end of the quarter.

Date	Calibration Check	Results	Limits	Actions
01/29/2024	BGI TSP Flow Verification (A)	-2.9%	±4%	
Pine Street	BGI TSP Flow Verification (B)	+3.0%	±4%	
	BGI Ambient Temperature	-0.5°C	±2.0°C	
	BGI Filter Temperature	-0.4°C	±2.0°C	
	BGI Ambient Pressure	+0.2 mm Hg	±10 mmHg	
	BGI Leak Test (pressure drop)	1 cm H ₂ 0	≤4 cm H ₂ 0	
01/29/2024	BGI TSP Flow Verification (A)	-1.1%	±4%	
Walnut Street	BGI TSP Flow Verification (B)	+1.1%	±4%	
	BGI Ambient Temperature	-0.9°C	±2.0°C	
	BGI Filter Temperature	-0.2°C	±2.0°C	
	BGI Ambient Pressure	-0.7 mm Hg	±10 mmHg	
	BGI Leak Test (pressure drop)	$1 \text{ cm } H_2O$	≤4 cm H ₂ 0	
02/22/2024	BGI TSP Flow Verification (A)	0.0%	±4%	
Pine Street	BGI TSP Flow Verification (B)	0.0%	±4%	
	BGI Ambient Temperature	-0.2°C	±2.0°C	
	BGI Filter Temperature	+0.9°C	±2.0°C	
	BGI Ambient Pressure	-1.0 mm Hg	±10 mmHg	
	BGI Leak Test (pressure drop)	1 cm H ₂ O	≤4 cm H ₂ 0	
02/22/2024	BGI TSP Flow Verification (A)	-0.4%	±4%	С
Walnut Street	BGI TSP Flow Verification (B)	+0.4%	±4%	С
	BGI Ambient Temperature	-0.8°C	±2.0°C	С
	BGI Filter Temperature	+0.5°C	±2.0°C	С
	BGI Ambient Pressure	-1.8 mm Hg	±10 mmHg	C
	BGI Leak Test (pressure drop)	$1 \text{ cm H}_2\text{O}$	≤4 cm H ₂ 0	С
02/22/2024	BGI TSP Flow Verification (A)	-0.2%	±4%	D
Walnut Street	BGI TSP Flow Verification (B)	+0.2%	±4%	D
	BGI Ambient Temperature	-0.1°C	±2.0°C	D
	BGI Filter Temperature	+1.0°C	±2.0°C	D
	BGI Ambient Pressure	-0.4 mm Hg	±10 mmHg	D
	BGI Leak Test (pressure drop)	1 cm H ₂ 0	$\leq 4 \text{ cm H}_20$	D
03/15/2024	BGI TSP Flow Verification (A)	-3.2%	±4%	E
Pine Street	BGI TSP Flow Verification (B)	+3.3%	±4%	E
	BGI Ambient Temperature	-0.5°C	±2.0°C	
	BGI Filter Temperature	+0.3°C	±2.0°C	
	BGI Ambient Pressure	-0.3 mm Hg	±10 mmHg	
00/4 = /0004	BGI Leak Test (pressure drop)	$1 \text{ cm H}_2\text{O}$	$\leq 4 \text{ cm H}_20$	
03/15/2024	BGI TSP Flow Verification (A)	-0.9%	±4%	
Walnut Street	BGI TSP Flow Verification (B)	+0.9%	±4%	
	BGI Ambient Temperature	-0.3°C	±2.0°C	
	BGI Filter Temperature	-0.2°C	±2.0°C	
	BGI Ambient Pressure	+0.2 mm Hg	±10 mmHg	
	BGI Leak Test (pressure drop)	2 cm H_20	$\leq 4 \text{ cm H}_20$	

Table 8: Summary of Quarter 1, 2024 Calibration Verification Results

Date	Calibration Check	Results	Limits	Actions
04/11/2024	BGI TSP Flow Verification (A)	-2.7%	±4%	
Pine Street	BGI TSP Flow Verification (B)	+2.8%	±4%	
	BGI Ambient Temperature	-0.4°C	±2.0°C	
	BGI Filter Temperature	-0.2°C	±2.0°C	
	BGI Ambient Pressure	-0.4 mm Hg	±10 mmHg	
	BGI Leak Test (pressure drop)	1 cm H ₂ 0	≤4 cm H ₂ 0	
04/11/2024	BGI TSP Flow Verification (A)	-1.9%	±4%	
Walnut Street	BGI TSP Flow Verification (B)	+2.0%	±4%	
	BGI Ambient Temperature	-0.5°C	±2.0°C	
	BGI Filter Temperature	-0.1°C	±2.0°C	
	BGI Ambient Pressure	-0.2 mm Hg	±10 mmHg	
	BGI Leak Test (pressure drop)	$1 \text{ cm H}_2\text{O}$	≤4 cm H ₂ 0	

Codes:

A = Difference of reported flow from reference standard flow.

B = Difference of reference standard flow from design flow of 16.7 LPM.

C = Results prior to installation of new main controller board.

D = Results following installation of new main controller board.

E = Performed multipoint flow calibration. New operating flow at 16.69 LPM.

7.0 QUARTERLY AUDIT/CALIBRATION RESULTS

An audit is performed once in each full calendar quarter. The checks and acceptance criteria are identical to those for monthly calibrations (see Table 7). The primary difference is that the audits are performed by a different person, using different calibration standards. Calibration adjustments then are made as necessary, based on the as-found audit results. The first quarter audit was performed on February 22, 2024, at both sites. Results for both samplers were satisfactory as shown in Table 9, and no adjustments were required.

Table 9: Quarter 1, 2024 Audit Results

BGI PQ200 TSP Sampler – Performance Audit							
Date: 02/22/2024	Time: 1215-1228	Sampler Serial Number:	90133 (Pine)				
Performed By: Daniel Bitz	Z	Observer: Steve Heck					
Ref Standard: Delta Cal SI	N 1288	Certification Date: 01/0	3/2024				
В	arometric Pressure	Sensor Verification					
Reading (mm Hg) Ambient Pressure	Sampler (a) 626	Audit (b) 625.9	Difference (a - b) (must be $\leq \pm 10$) +0.1				
	Temperature Sen	sor Verification					
Reading (degrees Celsius)	Sampler (a)	Audit (b)	Difference (a - b) (must be ≤ ± 2ºC)				
Ambient Temperature	3.2	3.9	-0.7				
Filter Temperature	5.9	6.6	-0.7				
	Leak C	Check					
Vacuum Readings (cm H2O)	Start 135	End 134	Pass Fail				
	Flow Rate V	erification					
Reading (liters per minute)	Sampler (a)	Audit (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)				
Operating flow rate check	16.7	16.06	+4.0%				
Reading (liters per minute)	Audit (b)	Design Flow Rate Standard (c)	% Difference 100*(b−16.7)/16.7 (must be ≤ ± 5%)				
Design flow rate calculation	16.06	16.7	-3.8%				
Comments:							

BGI PQ200 TSP Sampler – Performance Audit							
Date: 02/22/2024	Time: 1430-1445	Sampler Serial Number: 90129 Walnut					
Performed By: Daniel Bitz	Z	Observer: Steve Heck					
Ref Std: Delta Cal SN 1288	3	Certification Date: 01/0	3/2024				
В	arometric Pressure	Sensor Verification					
Reading (mm Hg) Ambient Pressure	Sampler (a) 627	Audit (b) 626.4	Difference (a - b) (must be $\leq \pm 10$) +0.6				
	Temperature Sen	sor Verification					
Reading (degrees Celsius)	Sampler (a)	Audit (b)	Difference (a - b) (must be ≤ ± 2ºC)				
Ambient Temperature	3.9	4.3	-0.4				
Filter Temperature	6.3	5.4	+0.9				
	Leak C	Check					
Vacuum Readings (cm H20)	Start 134	End 132	Pass Fail				
	Flow Rate V	erification					
Reading (liters per minute)	Sampler (a)	Audit (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)				
Operating flow rate check	16.7	16.21	+3.0%				
Reading (liters per minute)	Audit (b)	Design Flow Rate Standard (c)	% Difference 100*(b−16.7)/16.7 (must be ≤ ± 5%)				
calculation	16.21	16.7	-2.9%				
Comments: Performed with	new main PC board ins	stalled.					

8.0 DATA COMPLETENESS

Data recovery statistics for the particulate filter samples are presented in Table 10. The typical quarterly data recovery goal for TSP filter samples is \geq 80 percent for both the gravimetric and trace element analyses. The actual data recovery was 87 percent for the TSP gravimetric and trace element analyses for the Pine St site; thirteen of fifteen possible samples were collected. One sampling event was unsuccessful due to extreme cold. A second sample was not collected on the scheduled date, although a make-up sample was collected approximately two weeks later.

At the Walnut St site, fourteen of fifteen possible samples were collected giving a data recovery of 93 percent. One sampling event was unsuccessful due to extreme cold.

Dustfall sampling involves no active instrumentation; it merely requires exposure of a 15cm diameter open container for a period of approximately 30-days. It would therefore be highly unusual for any scheduled sample to not be collected and analyzed. Three rounds of \sim 30-day sampling at the Greeley School, Pine Street and Walnut Street sites were possible during the first quarter of 2024 – for a total of nine possible samples. All nine samples were collected as scheduled, giving a data recovery of 100 percent.

Montana Resources LLP									
	Readings	Valid	Percent						
Parameter	Possible	Results	Recovery						
	January 202	24							
TSP – Pine St / Gravimetric	6	5	83.3						
TSP – Pine St / Trace Elements	42	35	83.3						
TSP – Walnut St / Gravimetric	6	5	83.3						
TSP – Walnut St / Trace Elements	42	35	83.3						
Total	96	80	83.3						
	February 20	24							
TSP – Pine St / Gravimetric	5	4 (1)	80.0						
TSP – Pine St / Trace Elements	35	28 (1)	80.0						
TSP – Walnut St / Gravimetric	5	5 (2)	100.0						
TSP – Walnut St / Trace Elements	35	35 (2)	100.0						
Total	80	72	90.0						
	March 2024	4							
TSP – Pine St / Gravimetric	4	4	100.0						
TSP – Pine St / Trace Elements	28	28	100.0						
TSP – Walnut St / Gravimetric	4	4	100.0						
TSP – Walnut St / Trace Elements	28	28	100.0						
Total	64	64	100.0						
Quarter 1, 2024									
TSP – Pine St / Gravimetric	15	13	86.7						
TSP – Pine St / Trace Elements	105	91	86.7						
TSP – Walnut St / Gravimetric	15	14	93.3						
TSP – Walnut St / Trace Elements	105	98	93.3						
Total	240	216	90.0						

Table 10: Quarterly Data Completeness Summary - Filter Analysis Data

Sample scheduled for February 19 not collected. Make-up sample collected on March 3.
 One sample collected over non-standard sampling period. See Section 2.0 for discussion.

9.0 COMPARISON TO AMBIENT AIR QUALITY STANDARDS

This study is not intended to determine compliance with the NAAQS¹² or the Montana ambient air quality standards¹³ (MAAQS). Nonetheless, a generalized comparison is possible. The filter-based TSP data collected indicate ambient TSP concentrations well below the historical 24-hour standard of 260 μ g/m³ and the historical annual geometric average standard of 75 μ g/m³. *Note that all TSP standards were superseded by PM*₁₀ *standards in 1987.*¹⁴

Similarly, the lead concentrations analyzed from the exposed TSP filters indicate quarterly average airborne concentrations well below the 0.15 μ g/m³ ambient NAAQS based on a 3-month average of the 24-hour samples. The MAAQS is 1.5 μ g/m³ and is based on a 90-day rolling average of 24-hour samples. The TSP samples presented herein were collected for 24-hour periods, at a much lower sampling rate (16.7 liters per minute) compared to the standard method (>40 standard cubic feet per minute). Nonetheless, the results indicate quarterly average ambient lead concentrations below the MAAQS and NAAQS. Table 11 summarizes these comparisons through the first quarter of 2024.

Additionally, the analyses presented in Section 4.0 indicate that average airborne concentrations of the other six trace elements were below the suggested guidelines presented in Table 5.

Finally, the MAAQS for Dustfall specifies a particulate deposition rate not to exceed 10 $g/m^2/30$ -days. All Dustfall samples collected during the first quarter were below this value. There is no NAAQS for Dustfall.

¹² 40 CFR 50 et seq.

¹³ ARM 17.8.201 et. seq.

¹⁴ 52 FR 24634, July 1, 1987

Analyte	Location	Observed Concentration (µg/m ³)	Averaging Period	Ambient Standard (μg/m³)	Authority	
TCD	Pine St	112 ¹	24-hour	2603	NAAOS	
138	Walnut St	113 ¹	(max)	2603	NAAQS	
TCD	Pine St	38	Annual	763	NAAOS	
15P	Walnut St	38	Average	753	NAAQS	
Dh	Pine St	0.004 ²	90-day	1.50	MAAQS	
PD	Walnut St	0.004 ²	3-month	0.15	NAAQS	
Analyte	Location	Max. Observed Deposition Rate (g/m²/30-days)	Averaging Period	Ambient Standard (g/m²/30-days)	Authority	
	Greeley Sch.	4.6				
Dustfall	Pine St	4.2	30-days	10	MAAQS	
	Walnut St	5.3				

 Table 11: Summary of Airborne Concentration vs. NAAQS

¹This value was the <u>maximum</u> 24-hour value from the filter-based TSP sampler.

 2 This value was the quarterly average from the filter-based TSP sampler. Non-detect results were set to $\frac{1}{2}$ of the applicable detection limit when calculating the average.

³ The historical TSP standard shown for comparison purposes is no longer in effect. NAAQS standard for TSP was based on geometric mean and MAAQS on arithmetic average. Value shown represents arithmetic average for monitoring period of Quarter 1, 2024, based on gravimetric filter analysis.

APPENDIX A: GRAVIMETRIC ANALYSIS DATA

			PRE WEIGHT	PRE-WEIGHT	POST WEIGHT	POST-WEIGHT	PART MASS
FILTER	ТҮРЕ	DATE*	(MG)	DATE	(MG)	DATE	(MG)
C1708127	Field	8-Jan	121.704	22-Dec	121.738	22-Feb	0.034
C1708130	Lab	1-Mar	121.392	22-Dec	121.392 22-Feb		0.000
C1708135	Lab	7-Mar	121.980	12-Jan	121.980	23-Feb	0.000
C1708139	Field	4-Feb	120.005	12-Jan	120.017	23-Feb	0.012
C1733459	Lab	14-Mar	119.743	7-Feb	119.742	11-Mar	-0.001
C1733462	Field	4-Mar	120.505	7-Feb	120.518	11-Mar	0.013
C1733454	Lab	8-May	119.623	27-Feb	119.628	30-Apr	0.005
C1733479	Field	20-Mar	119.932	27-Feb	119.938	30-Apr	0.006

Quarter 1, 2024 Filter Analysis Results - Pine & Walnut - Blanks

*Denotes collection date for Field Blank, analysis date for Laboratory Blanks

Quarter 1, 2024 Filter Analysis Results - TSP - Pine St

511 75 0	DATE	AVG FLOW			PRE WEIGHT	PRE-WEIGHT	POST WEIGHT	POST-WEIGHT	PART MASS	CONC
FILTER	DATE	LPIVI	HOUKS			DATE		DATE		(00/1015)
C1708103	01/01	16.70	24:00	24.05	120.592	22-Dec	122.185	22-Feb	1.593	66.2
C1708105	01/07	16.70	24:00	24.05	119.603	22-Dec	121.411	22-Feb	1.808	75.2
C1708131	01/22	16.70	24:00	24.05	122.437	12-Jan	123.133	23-Feb	0.696	28.9
C1708134	01/25	16.70	24:00	24.05	122.998	12-Jan	123.731	23-Feb	0.733	30.5
C1708136	01/31	16.70	24:00	24.05	123.264	12-Jan	124.185	23-Feb	0.921	38.3
C1708138	02/05	16.70	24:00	24.05	120.158	12-Jan	120.499	23-Feb	0.341	14.2
C1733456	02/11	16.70	24:00	24.05	119.335	7-Feb	120.204	11-Mar	0.869	36.1
C1733461	02/24	16.70	24:00	24.05	120.294	7-Feb	120.812	11-Mar	0.518	21.5
C1733465	02/28	16.70	24:00	24.05	120.356	7-Feb	120.645	11-Mar	0.289	12.0
C1733458	03/03	16.70	24:00	24.05	119.919	7-Feb	120.447	11-Mar	0.528	22.0
C1733451	03/07	16.70	24:00	24.05	120.739	27-Feb	123.433	30-Apr	2.694	112.0
C1733453	03/14	16.70	24:00	24.05	121.525	27-Feb	122.082	30-Apr	0.557	23.2
C1733476	03/19	16.70	24:00	24.05	120.816	27-Feb	121.746	30-Apr	0.930	38.7
C1733478	03/27	16.70	24:00	24.05	119.499	27-Feb	119.934	30-Apr	0.435	18.1

Quarter 1, 2024 Filter Analysis Results - TSP - Walnut St

			AVG FLOW		SAMPLE	PRE WEIGHT	PRE-WEIGHT	POST WEIGHT	POST-WEIGHT	PART MASS	CONC
FILTER	ТҮРЕ	DATE	LPM	HOURS	VOLUME (M3)	(MG)	DATE	(MG)	DATE	(MG)	(UG/M3)
C1708104	TSP	01/01	16.70	23:40	23.71	121.599	22-Dec	122.623	22-Feb	1.024	43.2
C1708126	TSP	01/07	16.70	23:40	23.71	120.941	22-Dec	123.624	22-Feb	2.683	113.2
C1708132	TSP	01/22	16.70	23:40	23.71	121.497	12-Jan	122.463	23-Feb	0.966	40.7
C1708133	TSP	01/25	16.70	23:40	23.71	122.325	12-Jan	122.963	23-Feb	0.638	26.9
C1708137	TSP	01/31	16.70	23:40	23.71	121.045	12-Jan	122.116	23-Feb	1.071	45.2
C1708140	TSP	02/05	16.70	23:40	23.71	119.650	12-Jan	120.152	23-Feb	0.502	21.2
C1733457	TSP	02/11	16.70	23:40	23.71	120.250	7-Feb	121.121	11-Mar	0.871	36.7
C1733460	TSP	02/19	16.70	23:40	23.71	120.936	7-Feb	121.758	11-Mar	0.822	34.7
C1733463	TSP	02/24	16.70	35:24	35.47	119.855	7-Feb	120.192	11-Mar	0.337	9.5
C1733464	TSP	02/28	16.70	23:40	23.71	121.405	7-Feb	121.727	11-Mar	0.322	13.6
C1733452	TSP	03/07	16.70	23:40	23.71	120.280	27-Feb	121.436	30-Apr	1.156	48.8
C1733455	TSP	03/14	16.70	23:40	23.71	120.415	27-Feb	121.054	30-Apr	0.639	27.0
C1733477	TSP	03/19	16.70	23:40	23.71	120.403	27-Feb	121.242	30-Apr	0.839	35.4
C1733480	TSP	03/27	16.70	23:40	23.71	118.550	27-Feb	119.291	30-Apr	0.741	31.3

Sample for 02/24 overrand due to problem with new Main PC Board
APPENDIX B: LABORATORY ANALYSIS REPORTS - TSP

ANALYTICAL SUMMARY REPORT

March 15, 2024

Bison Engineering 3143 E Lyndale Ave Helena, MT 59601-6401

Work Order: B24021462 Quote ID: B4795

Project Name: Montana Resources/Greely School PW

Energy Laboratories Inc Billings MT received the following 10 samples for Bison Engineering on 2/23/2024 for analysis.

Lab ID	Client Sample ID	Coll ect Date	Receive Date	Matrix	Test
B24021462-001	Particulate filter #C1708101 Walnut ST TSP	12/29/23 00:00	02/23/24	Air	Metals on air filter by ICP/ICPMS Nitric acid-extraction by 40CFR50G
B24021462-002	Particulate filter #C1708102 Pine ST TSP	12/29/23 00:00) 02/23/24	Air	Same As Above
B24021462-003	Particulate filter #C1708103 Pine ST TSP	01/01/24 00:00) 02/23/24	Air	Same As Above
B24021462-004	Particulate filter #PC1708104 Walnut ST TSP	01/01/24 00:00) 02/23/24	Air	Same As Above
B24021462-005	Particulate filter #C17081005 Pine ST TSP	01/07/24 00:00) 02/23/24	Air	Same As Above
B24021462-006	Particulate filter #C1708126 Walnut ST TSP	01/07/24 00:00) 02/23/24	Air	Same As Above
B24021462-007	Particulate filter #C1708127 Field Blank 1	01/13/24 00:00) 02/23/24	Air	Same As Above
B24021462-008	Particulate filter #C1708128 Field Blank 2	01/16/24 12:14	02/23/24	Air	Same As Above
B24021462-009	Particulate filter #C1708129 Field Blank 3	01/16/24 16:35	5 02/23/24	Air	Same As Above
B24021462-010	Particulate filter #C1708130 Lab Blank	12/22/23 12:55	5 02/23/24	Air	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

ENERG	Trust our People. Trust our Data. www.energylab.com	Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711				
CLIENT:	Bison Engineering	Revised Date: 03/15/24				
Project:	Montana Resources/Greely School PW	Report Date: 03/13/24				
Work Order:	B24021462	CASE NARRATIVE				

Per client request, results are based on the final concentration using 25 mL of extraction solution per filter.

All "J" qualified analyte concentrations are below the laboratory minimum recommended Reporting Limit (RL) and above the lowest method detection limit (MDL)/Limit of Detection (LOD). Inorganic analytes reported with "J" qualifiers should be verified against the corresponding method blank and continuing calibration blanks. Inorganic "J" quantitations near the MDL/LOD may be suspect due to possible method background levels, sample matrix effects, and/or daily variability in instrument signal-to-noise levels.

Revised Date: 3/15/2024

On 3/14/2024 a request was received from Steve Heck at Bison Engineering to revise this workorder by changing the method detection limits (MDLs) to match historical client request and to change significant figures on results to report at least two significant figures on all samples.

The report has been revised and replaces the previously issued report dated 3/13/2024 in its entirety.

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021462-001
Client Sample ID:	Particulate filter #C1708101 Walnut ST TSP

 Revised Date:
 03/15/24

 Report Date:
 03/13/24

 Collection Date:
 12/29/23

 DateReceived:
 02/23/24

 Matrix:
 Air

		MCL/							
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By		
MFTALS IN AIR									
Arsenic	ND	ua/filter		1.0		E200.8	03/07/24 16:02 / iks		
Cadmium	ND	ug/filter		1.0		E200.8	03/01/24 04:03 / aem		
Copper	1.1	ug/filter		1.0		E200.8	03/01/24 04:03 / aem		
Lead	0.091	ug/filter	J	1.0		E200.8	03/01/24 04:03 / aem		
Manganese	0.23	ug/filter	J	1.0		E200.8	03/01/24 04:03 / aem		
Molybdenum	0.072	ug/filter	J	1.0		E200.8	03/07/24 16:02 / jks		
Zinc	1.3	ug/filter		1.0		E200.8	03/01/24 04:03 / aem		

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021462-002
Client Sample ID:	Particulate filter #C1708102 Pine ST TSP

 Revised Date:
 03/15/24

 Report Date:
 03/13/24

 Collection Date:
 12/29/23

 DateReceived:
 02/23/24

 Matrix:
 Air

					MCL/			
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By	
Arsenic	ND	ug/filter		1.0		E200.8	03/07/24 16:08 / jks	
Cadmium	0.0090	ug/filter	J	1.0		E200.8	03/01/24 04:09 / aem	
Copper	2.0	ug/filter		1.0		E200.8	03/01/24 04:09 / aem	
Lead	0.12	ug/filter	J	1.0		E200.8	03/01/24 04:09 / aem	
Manganese	0.55	ug/filter	J	1.0		E200.8	03/01/24 04:09 / aem	
Molybdenum	0.16	ug/filter	J	1.0		E200.8	03/07/24 16:08 / jks	
Zinc	0.89	ug/filter	J	1.0		E200.8	03/01/24 04:09 / aem	

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021462-003
Client Sample ID:	Particulate filter #C1708103 Pine ST TSP

 Revised Date:
 03/15/24

 Report Date:
 03/13/24

 Collection Date:
 01/01/24

 DateReceived:
 02/23/24

 Matrix:
 Air

	MCL/							
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By	
METALS IN AIR								
Arsenic	ND	ug/filter		1.0		E200.8	03/07/24 16:14 / jks	
Cadmium	0.013	ug/filter	J	1.0		E200.8	03/01/24 04:15 / aem	
Copper	4.2	ug/filter		1.0		E200.8	03/01/24 04:15 / aem	
Lead	0.19	ug/filter	J	1.0		E200.8	03/01/24 04:15 / aem	
Manganese	0.55	ug/filter	J	1.0		E200.8	03/01/24 04:15 / aem	
Molybdenum	0.13	ug/filter	J	1.0		E200.8	03/07/24 16:14 / jks	
Zinc	1.2	ug/filter		1.0		E200.8	03/01/24 04:15 / aem	

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021462-004
Client Sample ID:	Particulate filter #PC1708104 Walnut ST TSP

 Revised Date:
 03/15/24

 Report Date:
 03/13/24

 Collection Date:
 01/01/24

 DateReceived:
 02/23/24

 Matrix:
 Air

Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/07/24 16:20 / jks
Cadmium	ND	ug/filter		1.0		E200.8	03/01/24 04:21 / aem
Copper	2.0	ug/filter		1.0		E200.8	03/01/24 04:21 / aem
Lead	0.11	ug/filter	J	1.0		E200.8	03/01/24 04:21 / aem
Manganese	0.30	ug/filter	J	1.0		E200.8	03/01/24 04:21 / aem
Molybdenum	0.095	ug/filter	J	1.0		E200.8	03/07/24 16:20 / jks
Zinc	1.3	ug/filter		1.0		E200.8	03/01/24 04:21 / aem

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021462-005
Client Sample ID:	Particulate filter #C17081005 Pine ST TSP

 Revised Date:
 03/15/24

 Report Date:
 03/13/24

 Collection Date:
 01/07/24

 DateReceived:
 02/23/24

 Matrix:
 Air

		MCL/							
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By		
METALS IN AID									
Arsenic	ND	ug/filter		1.0		E200.8	03/07/24 16:25 / jks		
Cadmium	ND	ug/filter		1.0		E200.8	03/01/24 04:27 / aem		
Copper	2.9	ug/filter		1.0		E200.8	03/01/24 04:27 / aem		
Lead	0.14	ug/filter	J	1.0		E200.8	03/01/24 04:27 / aem		
Manganese	0.72	ug/filter	J	1.0		E200.8	03/01/24 04:27 / aem		
Molybdenum	0.26	ug/filter	J	1.0		E200.8	03/07/24 16:25 / jks		
Zinc	0.94	ug/filter	J	1.0		E200.8	03/01/24 04:27 / aem		

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021462-006
Client Sample ID:	Particulate filter #C1708126 Walnut ST TSP

 Revised Date:
 03/15/24

 Report Date:
 03/13/24

 Collection Date:
 01/07/24

 DateReceived:
 02/23/24

 Matrix:
 Air

	MCL/							
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By	
METALS IN AIR								
Arsenic	ND	ug/filter		1.0		E200.8	03/11/24 18:31 / aem	
Cadmium	ND	ug/filter		1.0		E200.8	03/01/24 04:33 / aem	
Copper	3.0	ug/filter		1.0		E200.8	03/01/24 04:33 / aem	
Lead	0.27	ug/filter	J	1.0		E200.8	03/01/24 04:33 / aem	
Manganese	1.0	ug/filter		1.0		E200.8	03/01/24 04:33 / aem	
Molybdenum	0.31	ug/filter	J	1.0		E200.8	03/07/24 16:31 / jks	
Zinc	1.4	ug/filter		1.0		E200.8	03/01/24 04:33 / aem	

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021462-007
Client Sample ID:	Particulate filter #C1708127 Field Blank 1

 Revised Date:
 03/15/24

 Report Date:
 03/13/24

 Collection Date:
 01/13/24

 DateReceived:
 02/23/24

 Matrix:
 Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/07/24 16:37 / jks
Cadmium	ND	ug/filter		1.0		E200.8	03/01/24 04:39 / aem
Copper	ND	ug/filter		1.0		E200.8	03/01/24 04:39 / aem
Lead	ND	ug/filter		1.0		E200.8	03/01/24 04:39 / aem
Manganese	ND	ug/filter		1.0		E200.8	03/01/24 04:39 / aem
Molybdenum	ND	ug/filter		1.0		E200.8	03/07/24 16:37 / jks
Zinc	ND	ug/filter		1.0		E200.8	03/01/24 04:39 / aem

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021462-008
Client Sample ID:	Particulate filter #C1708128 Field Blank 2

 Revised Date:
 03/15/24

 Report Date:
 03/13/24

 Collection Date:
 01/16/24 12:14

 DateReceived:
 02/23/24

 Matrix:
 Air

					MCL/				
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By		
METALS IN AIR									
Arsenic	0.086	ug/filter	J	1.0		E200.8	03/07/24 16:43 / jks		
Cadmium	0.0092	ug/filter	J	1.0		E200.8	03/01/24 04:45 / aem		
Copper	11	ug/filter		1.0		E200.8	03/01/24 04:45 / aem		
Lead	0.42	ug/filter	J	1.0		E200.8	03/01/24 04:45 / aem		
Manganese	1.6	ug/filter		1.0		E200.8	03/01/24 04:45 / aem		
Molybdenum	0.74	ug/filter	J	1.0		E200.8	03/07/24 16:43 / jks		
Zinc	2.5	ug/filter		1.0		E200.8	03/01/24 04:45 / aem		

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021462-009
Client Sample ID:	Particulate filter #C1708129 Field Blank 3

 Revised Date:
 03/15/24

 Report Date:
 03/13/24

 Collection Date:
 01/16/24 16:35

 DateReceived:
 02/23/24

 Matrix:
 Air

					MCL/				
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By		
METALS IN AIR									
Arsenic	ND	ug/filter		1.0		E200.8	03/11/24 18:37 / aem		
Cadmium	ND	ug/filter		1.0		E200.8	03/01/24 05:03 / aem		
Copper	2.3	ug/filter		1.0		E200.8	03/01/24 05:03 / aem		
Lead	0.17	ug/filter	J	1.0		E200.8	03/01/24 05:03 / aem		
Manganese	0.66	ug/filter	J	1.0		E200.8	03/01/24 05:03 / aem		
Molybdenum	0.11	ug/filter	J	1.0		E200.8	03/08/24 16:16 / aem		
Zinc	1.0	ug/filter		1.0		E200.8	03/01/24 05:03 / aem		

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021462-010
Client Sample ID:	Particulate filter #C1708130 Lab Blank

 Revised Date:
 03/15/24

 Report Date:
 03/13/24

 Collection Date:
 12/22/23 12:55

 DateReceived:
 02/23/24

 Matrix:
 Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/07/24 17:07 / jks
Cadmium	ND	ug/filter		1.0		E200.8	03/01/24 05:09 / aem
Copper	0.35	ug/filter	J	1.0		E200.8	03/01/24 05:09 / aem
Lead	ND	ug/filter		1.0		E200.8	03/01/24 05:09 / aem
Manganese	ND	ug/filter		1.0		E200.8	03/01/24 05:09 / aem
Molybdenum	ND	ug/filter		1.0		E200.8	03/07/24 17:07 / jks
Zinc	ND	ug/filter		1.0		E200.8	03/01/24 05:09 / aem

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

QA/QC Summary Report Prepared by Billings MT Branch

				Prepare	d by Billings, M	T Brand	ch	Revise	d Date:	03/15/24	
Client:	Bison Engineering				Work Order:	B2402	1462	Repo	rt Date:	03/13/24	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8							Analytic	al Run: I	CPMS207-B	_240307A
Lab ID:	QCS	2 Init	tial Calibratio	on Verifica	tion Standard					03/07	/24 14:34
Arsenic			0.0494	mg/L	0.0050	99	90	110			
Molybder	num		0.0501	mg/L	0.0050	100	90	110			
Lab ID:	CCV	2 Co	ntinuing Cal	libration Ve	erification Standar	ď				03/07	/24 15:39
Arsenic			0.0475	mg/L	0.0050	95	90	110			
Molybder	num		0.0480	mg/L	0.0050	96	90	110			
Lab ID:	ccv	2 Co	ntinuing Cal	libration Ve	erification Standar	ď				03/07	/24 16:55
Arsenic			0.0476	mg/L	0.0050	95	90	110			
Molybder	num		0.0472	mg/L	0.0050	94	90	110			
Method:	E200.8									Batc	h: 187449
Lab ID:	MB-187449	2 Me	thod Blank				Run: ICPM	S207-B_240307	A	03/07	/24 15:56
Arsenic			ND	ug/filter	0.08						
Molybder	num		ND	ug/filter	0.07						
Method:	E200.8							Analytic	al Run: I	CPMS207-B	_240311A
Lab ID:	QCS	Init	tial Calibratio	on Verifica	tion Standard					03/11	/24 11:43
Arsenic			0.0544	mg/L	0.0050	109	90	110			
Lab ID:	CCV	Co	ntinuing Cal	libration Ve	erification Standar	ď				03/11	/24 13:06
Arsenic			0.0497	mg/L	0.0050	99	90	110			
Lab ID:	QCS	Init	tial Calibratio	on Verifica	tion Standard					03/11	/24 16:45
Arsenic			0.0500	mg/L	0.0050	100	90	110			
Lab ID:	CCV	Co	ntinuing Cal	libration Ve	erification Standar	ď				03/11	/24 17:26
Arsenic			0.0498	mg/L	0.0050	100	90	110			
Method:	E200.8									Batc	h: 187449
Lab ID:	MB-187449	Me	thod Blank				Run: ICPM	S207-B 240311	А	03/11	/24 13:17
Arsenic			ND	ug/filter	0.08			—			

Trust our People. Trust our Data. www.energylab.com

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

QA/QC Summary Report

				Prepared	d by Billings, M	T Branc	h	Revised Date: 03/15/24				
Client:	Bison Engineering				Work Order:	B2402	1462	Repo	ort Date	: 03/13/24		
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual	
Method:	E200.8							Analytic	al Run: I	CPMS208-B	_240229A	
Lab ID:	QCS	5 Ini	tial Calibrati	on Verificat	ion Standard					03/01	/24 00:22	
Cadmium	1		0.0242	mg/L	0.0010	97	90	110				
Copper			0.0494	mg/L	0.010	99	90	110				
Lead			0.0484	mg/L	0.0010	97	90	110				
Mangane	se		0.245	mg/L	0.0050	98	90	110				
Zinc			0.0491	mg/L	0.0050	98	90	110				
Lab ID:	CCV	5 Cc	ontinuing Ca	libration Ve	rification Standa	rd				03/01	/24 03:34	
Cadmium	1		0.0454	mg/L	0.0010	91	90	110				
Copper			0.0463	mg/L	0.010	93	90	110				
Lead			0.0458	mg/L	0.0010	92	90	110				
Mangane	se		0.0460	mg/L	0.0050	92	90	110				
Zinc			0.0457	mg/L	0.0050	91	90	110				
Lab ID:	CCV	5 Cc	ontinuing Ca	libration Ve	rification Standa	rd				03/01	/24 04:51	
Cadmium	1		0.0457	mg/L	0.0010	91	90	110				
Copper			0.0470	mg/L	0.010	94	90	110				
Lead			0.0467	mg/L	0.0010	93	90	110				
Mangane	se		0.0467	mg/L	0.0050	93	90	110				
Zinc			0.0479	mg/L	0.0050	96	90	110				
Method:	E200.8									Batc	h: 187449	
Lab ID:	MB-187449	5 Me	ethod Blank				Run: ICPM	S208-B_240229	9A	03/01	/24 03:28	
Cadmium	1		ND	ug/filter	0.009							
Copper			ND	ug/filter	0.3							
Lead			ND	ug/filter	0.09							
Mangane	se		ND	ug/filter	0.2							
Zinc			ND	ug/filter	0.8							
Lab ID:	LCS-187449	7 La	boratory Co	ntrol Sampl	e		Run: ICPM	S208-B_24022	9A	03/01	/24 03:46	
Arsenic			91.7	ug/filter	1.0	92	85	115				
Cadmium	1		45.6	ug/filter	1.0	91	85	115				
Copper			92.3	ug/filter	5.0	92	85	115				
Lead			92.1	ug/filter	1.0	92	85	115				
Mangane	se		462	ug/filter	5.0	92	85	115				
Molybden	ium		88.6	ug/filter	1.0	89	85	115				
Zinc			93.2	ug/filter	5.0	93	85	115				
Lab ID:	LCSD-187449	7 La	boratory Co	ntrol Sampl	e Duplicate		Run: ICPM	S208-B_240229	9A	03/01	/24 03:52	
Arsenic			91.3	ug/filter	1.0	91	85	115				
Cadmium	1		44.9	ug/filter	1.0	90	85	115				
Copper			96.3	ug/filter	5.0	96	85	115				
Lead			90.2	ug/filter	1.0	90	85	115				
Mangane	se		460	ug/filter	5.0	92	85	115				
Molybden	ium		87.5	ug/filter	1.0	88	85	115				
Zinc			92.4	ug/filter	5.0	92	85	115				

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

QA/QC Summary Report Prepared by Billings MT Branch

			Prepare	d by Billings, M	T Branc	h	Revised Date: 03/15/24			
Client:	Bison Engineering			Work Order:	B2402	1462	Report Date: 03/13/24			
Analyte		Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8						Analytic	cal Run: IC	PMS208-B	_240308A
Lab ID:	QCS	Initial Calibra	tion Verifica	tion Standard					03/08	/24 11:47
Molybder	num	0.0509	mg/L	0.0050	102	90	110			
Lab ID:	ссу	Continuing C	alibration Ve	erification Standa	rd				03/08	/24 13:19
Molybder	num	0.0473	mg/L	0.0050	95	90	110			
Lab ID:	QCS	Initial Calibra	tion Verifica	tion Standard					03/08	/24 15:28
Molybder	num	0.0480	mg/L	0.0050	96	90	110			
Lab ID:	CCV	Continuing C	alibration Ve	erification Standa	rd				03/08	/24 15:34
Molybder	num	0.0490	mg/L	0.0050	98	90	110			
Method:	E200.8								Batc	h: 187449
Lab ID:	MB-187449	Method Blanl	K			Run: ICPM	S208-B_240308	8A	03/08	/24 15:46
Molybder	num	ND	ug/filter	0.07						

Work Order Receipt Checklist

Bison Engineering

B24021462

Login completed by: Danielle N. Harris	pleted by: Danielle N. Harris Date Received: 2						
Reviewed by: Ileprowse		Received by: DNH					
Reviewed Date: 2/29/2024		Carı	Carrier name: Hand Deliver				
Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Present				
Custody seals intact on all shipping container(s)/coole	er(s)? Yes	No 🗌	Not Present 🗹				
Custody seals intact on all sample bottles?	Yes	No 🗌	Not Present 🗹				
Chain of custody present?	Yes 🗸	No 🗌					
Chain of custody signed when relinquished and received	ved? Yes 🗹	No 🗌					
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌					
Samples in proper container/bottle?	Yes 🗸	No 🗌					
Sample containers intact?	Yes 🗸	No 🗌					
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌					
All samples received within holding time? (Exclude analyses that are considered field parameter such as pH, DO, Res CI, Sulfite, Ferrous Iron, etc.)	Yes 🗹 s	No 🗌					
Temp Blank received in all shipping container(s)/coole	er(s)? Yes 🗸	No 🗌	Not Applicable				
Container/Temp Blank temperature:	3.0°C Blue Ice						
Containers requiring zero headspace have no headspace bubble that is $<6mm (1/4")$.	ace or Yes	No 🗌	No VOA vials submitted				
Water - pH acceptable upon receipt?	Yes 🗌	No 🗌	Not Applicable				

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

Chain of Custody & Analytical Request Record

ELI-COC-10/18 v.3 Energy Laboratories MUST be contacted prior to RUSH sample submittal for charges and scheduling – See Instructions Page All turnaround times are standard unless marked as -29/120/28 ELI LAB ID Laboratory Use Only 5 Receipt Number (cash/check only) RUSH. -1619 Signation Day In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report. Page Signature Comments TAT See Attached MC KS 12M Amount \$ Date/Time × × × × × × × × × × Analysis Requested JUIZ Polyad by Laboratory (print) × × × × × × × × × × D Other Account Information) Molybdenum Payment Type sh Check × × × × × × × × × × N EDD/EDT (contact laboratory) Manganese Suite × × × × × × × × × dmilmine@bison-eng.com × Cash Received by (print) Mailing Address 2751 Enterprise Avenue **Pead** Company/Name Bison Engineering, Inc. Report Information (if different than × × × × × × × × × × City, State, Zip Billings, MT 59102 ww.energylab.com Copper Receive Report DHard Copy DEmail 8 (406) 208-4833 LABORATORY USE ONLY × × × × × × × × × × Don Milmine Cadmium On Ice Y N almine D LEVEL IV D NELAC × × × × × × × × × × Arsenic Special Report/Formats ON Tetlon Di Her ON Tetlon Fifter Dr. Takton fifter on takton Dr. Her Dr. Her Dr. Takton filter filter on letion filler On lefton Above) Matrix (See Code: FEE Temp Blank Y N Bioassay V - Vegetation Matrix Codes Other Drinking Water W- Water Solids/ Solids 5 A- Air Contact Phone ŝ - MO Number of that! Email ė -0 Containers ---------Receipt Temp °C Signature composite compasite zy hr composite 24 nor my pasite omposite Project Name, PWSID, Permit, etc. Montana Resources / Greely School PW Email ON D 1214 12.65 Time 1635 24 45 24 4 00 Collection 11e.(2) Byproduct Material (Can ONLY be Submitted to ELI Casper Location) J Yes Receive Report DHard Copy 10 Particulate filter #C1708130 Lab Blank 12/22/23 12/29/23 Particulate filter #C1708102 Pine ST TSP 12/29/23 NOT Source or Byproduct Material Source/Processed Ore (Ground or Refined) **CALL BEFORE SENDING 8 Particulate filter #C1708128 Field Blank 2 1/16/24 9 Particulate filter #C1708129 Field Blank 3 1/16/24 Particulate filter #C1708127 Field Blank 1 1/13/24 Bottle Order 2 Date Intact Y N 1/1/24 5 Particulate filter #C1708105 Pine ST TSP | 1/7/24 6 Particulate filter #C1708126 Walnut ST TSP 1/7/24 1/1/24 EPA/State Compliance Date/Time Particulate filter #C1708101 Walnut ST TSP Particulate filter #PC1708104 Walnut ST TSP Particulate filter #C1708103 Pine ST TSP Sampler Phone Custody Seals Y N C B sbrown-argott@bison-eng.com JRANIUM MINING CLIENTS MUST indicate sample type Account Information (Billing information) Vailing Address 3143 E Lyndale Avenue Company/Name Bison Engineering, Inc. Sample Identification Shelley Brown-Argott Remquished by Aring (Name, Location, Interval, etc.) DHard Copy DEmail Helena MT, 59601 (406) 442-5768 Quote Relinquished by (print) Cooler ID(s) frast and People. Frast and Outs Sample Origin State Montana Project Information Custody Record MUST Receive Invoice MTR221018 City, State, Zip Purchase Order Shipped By Sampler Name be signed Contact Phone Email

ANALYTICAL SUMMARY REPORT

April 02, 2024

Bison Engineering 3143 E Lyndale Ave Helena, MT 59601-6401

Work Order: B24021464 Quote ID: B4795

Project Name: Montana Resources/Greely School PW

Energy Laboratories Inc Billings MT received the following 10 samples for Bison Engineering on 2/23/2024 for analysis.

Lab ID	Client Sample ID	Coll ect Date	Receive Date	Matrix	Test
B24021464-001	Particulate filter #C1708131 Pine ST TSP	01/22/24 00:00) 02/23/24	Air	Metals on air filter by ICP/ICPMS Nitric acid-extraction by 40CFR50G
B24021464-002	Particulate filter #C1708132 Walnut ST TSP	01/22/24 00:00) 02/23/24	Air	Same As Above
B24021464-003	Particulate filter #C1708133 Walnut ST TSP	01/25/24 00:00) 02/23/24	Air	Same As Above
B24021464-004	Particulate filter #PC1708134 Pine ST TSP	01/25/24 00:00) 02/23/24	Air	Same As Above
B24021464-005	Particulate filter #C1708135 Lab Blank	01/12/24 12:45	5 02/23/24	Air	Same As Above
B24021464-006	Particulate filter #C1708136 Pine ST TSP	01/31/24 00:00) 02/23/24	Air	Same As Above
B24021464-007	Particulate filter #C1708137 Walnut ST TSP	01/31/24 00:00) 02/23/24	Air	Same As Above
B24021464-008	Particulate filter #C1708138 Pine ST TSP	02/05/24 00:00) 02/23/24	Air	Same As Above
B24021464-009	Particulate filter #C1708139 Field Blank	02/04/24 14:12	2 02/23/24	Air	Same As Above
B24021464-010	Particulate filter #C1708140 Walnut ST TSP	02/05/24 00:00) 02/23/24	Air	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

ENERGY	Trust our People. Trust our Data. www.energylab.com	Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711					
	Bison Engineering	Revised Date: 04/02/24 Report Date: 03/08/24					
Project:	Montana Resources/Greely School PW						
Work Order:	B24021464	CASE NARRATIVE					

Per client request, results are based on the final concentration using 25 mL of extraction solution per filter.

All "J" qualified analyte concentrations are below the laboratory minimum recommended Reporting Limit (RL) and above the lowest method detection limit (MDL)/Limit of Detection (LOD). Inorganic analytes reported with "J" qualifiers should be verified against the corresponding method blank and continuing calibration blanks. Inorganic "J" quantitations near the MDL/LOD may be suspect due to possible method background levels, sample matrix effects, and/or daily variability in instrument signal-to-noise levels.

Revised Date: 3/27/2024

On 3/26/2024 a request was received from Steve Heck at Bison Engineering to revise this workorder by changing the method detection limits (MDLs) to match historical client request and to change significant figures on results to report at least two significant figures on all samples.

The report has been revised and replaces the previously issued report dated 3/8/2024 in its entirety.

Revised Date: 4/2/2024

On 4/1/2024 a request was received from Steve Heck at Bison Engineering to revise this workorder by changing the MDLs and significant figures on all samples as requested in the previous revision, not just quality control samples. We apologize for any inconvenience this may have caused.

The report has been revised and replaces the previously issued report dated 3/27/2024 in its entirety.

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021464-001
Client Sample ID:	Particulate filter #C1708131 Pine ST TSP

 Revised Date:
 04/02/24

 Report Date:
 03/08/24

 Collection Date:
 01/22/24

 DateReceived:
 02/23/24

 Matrix:
 Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/07/24 17:12 / jks
Cadmium	ND	ug/filter		1.0		E200.8	03/07/24 17:12 / jks
Copper	2.5	ug/filter		1.0		E200.8	03/07/24 17:12 / jks
Lead	ND	ug/filter		1.0		E200.8	03/07/24 17:12 / jks
Manganese	0.24	ug/filter	J	1.0		E200.8	03/07/24 17:12 / jks
Molybdenum	0.27	ug/filter	J	1.0		E200.8	03/07/24 17:12 / jks
Zinc	0.82	ug/filter	J	1.0		E200.8	03/07/24 17:12 / jks

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021464-002
Client Sample ID:	Particulate filter #C1708132 Walnut ST TSP

 Revised Date:
 04/02/24

 Report Date:
 03/08/24

 Collection Date:
 01/22/24

 DateReceived:
 02/23/24

 Matrix:
 Air

		MCL/					
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/07/24 17:18 / jks
Cadmium	ND	ug/filter		1.0		E200.8	03/07/24 17:18 / jks
Copper	2.4	ug/filter		1.0		E200.8	03/07/24 17:18 / jks
Lead	ND	ug/filter		1.0		E200.8	03/07/24 17:18 / jks
Manganese	0.33	ug/filter	J	1.0		E200.8	03/07/24 17:18 / jks
Molybdenum	0.14	ug/filter	J	1.0		E200.8	03/07/24 17:18 / jks
Zinc	1.0	ug/filter		1.0		E200.8	03/07/24 17:18 / jks

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021464-003
Client Sample ID:	Particulate filter #C1708133 Walnut ST TSP

 Revised Date:
 04/02/24

 Report Date:
 03/08/24

 Collection Date:
 01/25/24

 DateReceived:
 02/23/24

 Matrix:
 Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/07/24 17:24 / jks
Cadmium	ND	ug/filter		1.0		E200.8	03/07/24 17:24 / jks
Copper	0.82	ug/filter	J	1.0		E200.8	03/07/24 17:24 / jks
Lead	ND	ug/filter		1.0		E200.8	03/07/24 17:24 / jks
Manganese	0.22	ug/filter	J	1.0		E200.8	03/07/24 17:24 / jks
Molybdenum	ND	ug/filter		1.0		E200.8	03/07/24 17:24 / jks
Zinc	0.91	ug/filter	J	1.0		E200.8	03/07/24 17:24 / jks

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021464-004
Client Sample ID:	Particulate filter #PC1708134 Pine ST TSP

 Revised Date:
 04/02/24

 Report Date:
 03/08/24

 Collection Date:
 01/25/24

 DateReceived:
 02/23/24

 Matrix:
 Air

				MCL/				
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By	
METALS IN AIR								
Arsenic	ND	ug/filter		1.0		E200.8	03/07/24 17:30 / jks	
Cadmium	ND	ug/filter		1.0		E200.8	03/07/24 17:30 / jks	
Copper	2.0	ug/filter		1.0		E200.8	03/07/24 17:30 / jks	
Lead	0.091	ug/filter	J	1.0		E200.8	03/07/24 17:30 / jks	
Manganese	0.33	ug/filter	J	1.0		E200.8	03/07/24 17:30 / jks	
Molybdenum	ND	ug/filter		1.0		E200.8	03/07/24 17:30 / jks	
Zinc	0.94	ug/filter	J	1.0		E200.8	03/07/24 17:30 / jks	

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021464-005
Client Sample ID:	Particulate filter #C1708135 Lab Blank

 Revised Date:
 04/02/24

 Report Date:
 03/08/24

 Collection Date:
 01/12/24 12:45

 DateReceived:
 02/23/24

 Matrix:
 Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/07/24 17:36 / jks
Cadmium	ND	ug/filter		1.0		E200.8	03/07/24 17:36 / jks
Copper	ND	ug/filter		1.0		E200.8	03/07/24 17:36 / jks
Lead	ND	ug/filter		1.0		E200.8	03/07/24 17:36 / jks
Manganese	ND	ug/filter		1.0		E200.8	03/07/24 17:36 / jks
Molybdenum	ND	ug/filter		1.0		E200.8	03/07/24 17:36 / jks
Zinc	ND	ug/filter		1.0		E200.8	03/07/24 17:36 / jks

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021464-006
Client Sample ID:	Particulate filter #C1708136 Pine ST TSP

 Revised Date:
 04/02/24

 Report Date:
 03/08/24

 Collection Date:
 01/31/24

 DateReceived:
 02/23/24

 Matrix:
 Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/07/24 17:42 / jks
Cadmium	ND	ug/filter		1.0		E200.8	03/07/24 17:42 / jks
Copper	2.3	ug/filter		1.0		E200.8	03/07/24 17:42 / jks
Lead	0.12	ug/filter	J	1.0		E200.8	03/07/24 17:42 / jks
Manganese	0.37	ug/filter	J	1.0		E200.8	03/07/24 17:42 / jks
Molybdenum	0.084	ug/filter	J	1.0		E200.8	03/07/24 17:42 / jks
Zinc	ND	ug/filter		1.0		E200.8	03/07/24 17:42 / jks

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021464-007
Client Sample ID:	Particulate filter #C1708137 Walnut ST TSP

 Revised Date:
 04/02/24

 Report Date:
 03/08/24

 Collection Date:
 01/31/24

 DateReceived:
 02/23/24

 Matrix:
 Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/07/24 17:48 / jks
Cadmium	ND	ug/filter		1.0		E200.8	03/07/24 17:48 / jks
Copper	2.0	ug/filter		1.0		E200.8	03/07/24 17:48 / jks
Lead	0.13	ug/filter	J	1.0		E200.8	03/07/24 17:48 / jks
Manganese	0.36	ug/filter	J	1.0		E200.8	03/07/24 17:48 / jks
Molybdenum	0.094	ug/filter	J	1.0		E200.8	03/07/24 17:48 / jks
Zinc	0.97	ug/filter	J	1.0		E200.8	03/07/24 17:48 / jks

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021464-008
Client Sample ID:	Particulate filter #C1708138 Pine ST TSP

 Revised Date:
 04/02/24

 Report Date:
 03/08/24

 Collection Date:
 02/05/24

 DateReceived:
 02/23/24

 Matrix:
 Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/07/24 17:53 / jks
Cadmium	ND	ug/filter		1.0		E200.8	03/07/24 17:53 / jks
Copper	1.6	ug/filter		1.0		E200.8	03/07/24 17:53 / jks
Lead	ND	ug/filter		1.0		E200.8	03/07/24 17:53 / jks
Manganese	ND	ug/filter		1.0		E200.8	03/07/24 17:53 / jks
Molybdenum	0.13	ug/filter	J	1.0		E200.8	03/07/24 17:53 / jks
Zinc	ND	ug/filter		1.0		E200.8	03/07/24 17:53 / jks

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021464-009
Client Sample ID:	Particulate filter #C1708139 Field Blank

 Revised Date:
 04/02/24

 Report Date:
 03/08/24

 Collection Date:
 02/04/24

 DateReceived:
 02/23/24

 Matrix:
 Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/07/24 17:59 / jks
Cadmium	ND	ug/filter		1.0		E200.8	03/07/24 17:59 / jks
Copper	ND	ug/filter		1.0		E200.8	03/07/24 17:59 / jks
Lead	ND	ug/filter		1.0		E200.8	03/07/24 17:59 / jks
Manganese	ND	ug/filter		1.0		E200.8	03/07/24 17:59 / jks
Molybdenum	ND	ug/filter		1.0		E200.8	03/07/24 17:59 / jks
Zinc	ND	ug/filter		1.0		E200.8	03/07/24 17:59 / jks

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24021464-010
Client Sample ID:	Particulate filter #C1708140 Walnut ST TSP

 Revised Date:
 04/02/24

 Report Date:
 03/08/24

 Collection Date:
 02/05/24

 DateReceived:
 02/23/24

 Matrix:
 Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/07/24 18:17 / jks
Cadmium	ND	ug/filter		1.0		E200.8	03/07/24 18:17 / jks
Copper	1.2	ug/filter		1.0		E200.8	03/07/24 18:17 / jks
Lead	ND	ug/filter		1.0		E200.8	03/07/24 18:17 / jks
Manganese	ND	ug/filter		1.0		E200.8	03/07/24 18:17 / jks
Molybdenum	0.18	ug/filter	J	1.0		E200.8	03/07/24 18:17 / jks
Zinc	ND	ug/filter		1.0		E200.8	03/07/24 18:17 / jks

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Trust our People. Trust our Data. www.energylab.com

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

QA/QC Summary Report

				Prepared by Billings, MT Branch				Revised Date: 03/27/24			
Client:	Bison Engineering			Work Order: B24021464			Report Date: 03/08/24				
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8							Analytic	al Run: I	CPMS207-B	_240307A
Lab ID:	QCS	7 Init	ial Calibrati	on Verifica	tion Standard					03/07	/24 14:34
Arsenic			0.0494	mg/L	0.0050	99	90	110			
Cadmium	ı		0.0251	mg/L	0.0010	100	90	110			
Copper			0.0501	mg/L	0.010	100	90	110			
Lead			0.0474	mg/L	0.0010	95	90	110			
Mangane	se		0.248	mg/L	0.0050	99	90	110			
Molybden	num		0.0501	mg/L	0.0050	100	90	110			
Zinc			0.0493	mg/L	0.0050	99	90	110			
Lab ID:	CCV	7 Co	ntinuing Ca	libration Ve	erification Standa	ď				03/07	/24 16:55
Arsenic			0.0476	mg/L	0.0050	95	90	110			
Cadmium	ı		0.0483	mg/L	0.0010	97	90	110			
Copper			0.0483	mg/L	0.010	97	90	110			
Lead			0.0472	mg/L	0.0010	94	90	110			
Mangane	se		0.0448	mg/L	0.0050	90	90	110			
Molybden	num		0.0472	mg/L	0.0050	94	90	110			
Zinc			0.0470	mg/L	0.0050	94	90	110			
Lab ID:	CCV	7 Co	ntinuing Ca	libration Ve	erification Standa	ď				03/07	/24 18:05
Arsenic			0.0475	mg/L	0.0050	95	90	110			
Cadmium	1		0.0490	mg/L	0.0010	98	90	110			
Copper			0.0485	mg/L	0.010	97	90	110			
Lead			0.0453	mg/L	0.0010	91	90	110			
Mangane	se		0.0449	mg/L	0.0050	90	90	110			
Molybden	num		0.0484	mg/L	0.0050	97	90	110			
Zinc			0.0470	mg/L	0.0050	94	90	110			
Lab ID:	CCV	7 Co	ntinuing Ca	libration Ve	erification Standa	ď				03/07	/24 16:55
Arsenic			0.0476	mg/L	0.0050	95	90	110			
Cadmium	1		0.0483	mg/L	0.0010	97	90	110			
Copper			0.0483	mg/L	0.010	97	90	110			
Lead			0.0472	mg/L	0.0010	94	90	110			
Mangane	se		0.0448	mg/L	0.0050	90	90	110			
Molybden	num		0.0472	mg/L	0.0050	94	90	110			
Zinc			0.0470	mg/L	0.0050	94	90	110			
Lab ID:	CCV	7 Co	ntinuing Ca	libration Ve	erification Standa	ď				03/07	/24 18:05
Arsenic			0.0475	mg/L	0.0050	95	90	110			
Cadmium	1		0.0490	mg/L	0.0010	98	90	110			
Copper			0.0485	mg/L	0.010	97	90	110			
Lead			0.0453	mg/L	0.0010	91	90	110			
Mangane	se		0.0449	mg/L	0.0050	90	90	110			
Molybden	num		0.0484	mg/L	0.0050	97	90	110			
Zinc			0.0470	mg/L	0.0050	94	90	110			

Method: E200.8

Batch: 187449

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

QA/QC Summary Report

				Prepared	by Billings, M	- T Branc	h	Revised	Date	: 03/27/24	
Client:	Bison Engineering				Work Order:	B2402	1464	Repor	t Date:	: 03/08/24	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8									Batc	h: 187449
Lab ID:	MB-187449	7 Me	thod Blank				Run: ICPM	S207-B_240307A	`	03/07/	/24 15:56
Arsenic			ND	ug/filter	0.08						
Cadmiun	n		ND	ug/filter	0.009						
Copper			ND	ug/filter	0.3						
Lead			ND	ug/filter	0.09						
Mangane	ese		ND	ug/filter	0.2						
Molybde	num		ND	ug/filter	0.07						
Zinc			ND	ug/filter	0.8						
Method:	E200.8									Batc	h: 187449
Lab ID:	LCS-187449	7 Lab	oratory Co	ntrol Sample	9		Run: ICPM	S208-B_240229A	۱	03/01/	/24 03:46
Arsenic			91.7	ug/filter	1.0	92	85	115			
Cadmiun	n		45.6	ug/filter	1.0	91	85	115			
Copper			92.3	ug/filter	5.0	92	85	115			
Lead			92.1	ug/filter	1.0	92	85	115			
Mangane	ese		462	ug/filter	5.0	92	85	115			
Molybde	num		88.6	ug/filter	1.0	89	85	115			
Zinc			93.2	ug/filter	5.0	93	85	115			
Lab ID:	LCSD-187449	7 Lat	oratory Co	ntrol Sample	e Duplicate		Run: ICPM	S208-B_240229A		03/01/	/24 03:52
Arsenic			91.3	ug/filter	1.0	91	85	115			
Cadmiun	n		44.9	ug/filter	1.0	90	85	115			
Copper			96.3	ug/filter	5.0	96	85	115			
Lead			90.2	ug/filter	1.0	90	85	115			
Mangane	ese		460	ug/filter	5.0	92	85	115			
Molybdenum 87.5		ug/filter	1.0	88	85	115					
Zinc			92.4	ug/filter	5.0	92	85	115			

Work Order Receipt Checklist

Bison Engineering

B24021464

Login completed by:	Danielle N. Harris		Date I	Received: 2/23/2024				
Reviewed by:	lleprowse		Red	ceived by: DNH				
Reviewed Date:	Reviewed Date: 2/29/2024		Carrier name: Hand Deliver					
Shipping container/cooler in	good condition?	Yes 🗸	No 🗌	Not Present				
Custody seals intact on all sl	hipping container(s)/cooler(s)?	Yes	No 🗌	Not Present 🗹				
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present 🗹				
Chain of custody present?		Yes 🗹	No 🗌					
Chain of custody signed whe	en relinquished and received?	Yes 🗹	No 🗌					
Chain of custody agrees with	n sample labels?	Yes 🗹	No 🗌					
Samples in proper container,	/bottle?	Yes 🗹	No 🗌					
Sample containers intact?		Yes 🗹	No 🗌					
Sufficient sample volume for	indicated test?	Yes 🗹	No 🗌					
All samples received within h (Exclude analyses that are c such as pH, DO, Res Cl, Su	nolding time? onsidered field parameters Ifite, Ferrous Iron, etc.)	Yes 🗹	No 🗌					
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes 🗹	No 🗌	Not Applicable				
Container/Temp Blank tempe	erature:	3.0°C Blue Ice						
Containers requiring zero here bubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted				
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable				

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

ANALYTICAL SUMMARY REPORT

March 22, 2024

Bison Engineering 3143 E Lyndale Ave Helena, MT 59601-6401

Work Order: B24030571 Quote ID: B4795

Project Name: Montana Resources/Greely School PW

Energy Laboratories Inc Billings MT received the following 10 samples for Bison Engineering on 3/11/2024 for analysis.

Lab ID	Client Sample ID	Coll ect Date	Receive Date	Matrix	Test
B24030571-001	Particulate Filter C17334561 TSP Pine St Composite	02/11/24 00:00	0 03/11/24	Air	Metals on air filter by ICP/ICPMS Nitric acid-extraction by 40CFR50G
B24030571-002	Particulate Filter C1733457 TSP Walnut St Composite	02/11/24 00:00	0 03/11/24	Air	Same As Above
B24030571-003	Particulate Filter C1733458 TSP Pine St Composite	03/03/24 00:00	0 03/11/24	Air	Same As Above
B24030571-004	Particulate Filter C1733459 Lab Blank	02/07/24 13:00	0 03/11/24	Air	Same As Above
B24030571-005	Particulate Filter C1733460 TSP Walnut St Composite	02/19/24 00:00	0 03/11/24	Air	Same As Above
B24030571-006	Particulate Filter C1733461 TSP Pine St Composite	02/24/24 00:00	0 03/11/24	Air	Same As Above
B24030571-007	Particulate Filter C1733462 TSP Field Blank	03/04/24 13:2	5 03/11/24	Air	Same As Above
B24030571-008	Particulate Filter C1733463 TSP Walnut St Composite	02/24/24 00:00	0 03/11/24	Air	Same As Above
B24030571-009	Particulate Filter C1733464 TSP Walnut St Composite	02/28/24 00:00	0 03/11/24	Air	Same As Above
B24030571-010	Particulate Filter C1733465 TSP Pine St Composite	02/28/24 00:00	0 03/11/24	Air	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

LABORATORIES	Trust our People. Trust our Data. www.energylab.com	Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711					
CLIENT: Project:	Bison Engineering Montana Resources/Greely School PW	Report Date: 03/22/24					
Work Order:	B24030571	CASE NARRATIVE					

Per client request, results are based on the final concentration using 25 mL of extraction solution per filter.

All "J" qualified analyte concentrations are below the laboratory minimum recommended Reporting Limit (RL) and above the lowest method detection limit (MDL)/Limit of Detection (LOD). Inorganic analytes reported with "J" qualifiers should be verified against the corresponding method blank and continuing calibration blanks. Inorganic "J" quantitations near the MDL/LOD may be suspect due to possible method background levels, sample matrix effects, and/or daily variability in instrument signal-to-noise levels.

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24030571-001
Client Sample ID:	Particulate Filter C17334561 TSP Pine St Composite

 Report Date:
 03/22/24

 Collection Date:
 02/11/24

 DateReceived:
 03/11/24

 Matrix:
 Air

		MCL/								
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By			
METALS IN AIR										
Arsenic	ND	ug/filter		1.0		E200.8	03/14/24 03:03 / aem			
Cadmium	ND	ug/filter		1.0		E200.8	03/14/24 03:03 / aem			
Copper	1.4	ug/filter		1.0		E200.8	03/14/24 03:03 / aem			
Lead	ND	ug/filter		1.0		E200.8	03/14/24 12:53 / aem			
Manganese	0.38	ug/filter	J	1.0		E200.8	03/14/24 03:03 / aem			
Molybdenum	0.11	ug/filter	J	1.0		E200.8	03/14/24 03:03 / aem			
Zinc	0.81	ug/filter	J	1.0		E200.8	03/14/24 03:03 / aem			

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering	
Project:	Montana Resources/Greely School PW	C
Lab ID:	B24030571-002	
Client Sample II	D: Particulate Filter C1733457 TSP Walnut St Composite	

 Report Date:
 03/22/24

 Collection Date:
 02/11/24

 DateReceived:
 03/11/24

 Matrix:
 Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/14/24 03:21 / aem
Cadmium	ND	ug/filter		1.0		E200.8	03/14/24 03:21 / aem
Copper	1.4	ug/filter		1.0		E200.8	03/14/24 03:21 / aem
Lead	0.090	ug/filter	J	1.0		E200.8	03/14/24 12:58 / aem
Manganese	0.34	ug/filter	J	1.0		E200.8	03/14/24 03:21 / aem
Molybdenum	0.081	ug/filter	J	1.0		E200.8	03/14/24 03:21 / aem
Zinc	ND	ug/filter		1.0		E200.8	03/14/24 03:21 / aem

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24030571-003
Client Sample ID:	Particulate Filter C1733458 TSP Pine St Composite

 Report Date:
 03/22/24

 Collection Date:
 03/03/24

 DateReceived:
 03/11/24

 Matrix:
 Air

		MCL/							
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By		
METALS IN AIR									
Arsenic	ND	ug/filter		1.0		E200.8	03/14/24 03:27 / aem		
Cadmium	ND	ug/filter		1.0		E200.8	03/14/24 03:27 / aem		
Copper	1.1	ug/filter		1.0		E200.8	03/14/24 13:04 / aem		
Lead	ND	ug/filter		1.0		E200.8	03/14/24 13:04 / aem		
Manganese	ND	ug/filter		1.0		E200.8	03/14/24 03:27 / aem		
Molybdenum	ND	ug/filter		1.0		E200.8	03/14/24 03:27 / aem		
Zinc	ND	ug/filter		1.0		E200.8	03/14/24 03:27 / aem		

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24030571-004
Client Sample ID:	Particulate Filter C1733459 Lab Blank

 Report Date:
 03/22/24

 Collection Date:
 02/07/24
 13:00

 DateReceived:
 03/11/24

 Matrix:
 Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/14/24 03:33 / aem
Cadmium	ND	ug/filter		1.0		E200.8	03/14/24 03:33 / aem
Copper	ND	ug/filter		1.0		E200.8	03/14/24 03:33 / aem
Lead	ND	ug/filter		1.0		E200.8	03/14/24 03:33 / aem
Manganese	ND	ug/filter		1.0		E200.8	03/14/24 03:33 / aem
Molybdenum	ND	ug/filter		1.0		E200.8	03/14/24 03:33 / aem
Zinc	ND	ug/filter		1.0		E200.8	03/14/24 03:33 / aem

Prepared by Billings, MT Branch

Client:	Bison Engineering	
Project:	Montana Resources/Greely School PW	Col
Lab ID:	B24030571-005	D
Client Sample ID:	Particulate Filter C1733460 TSP Walnut St Composite	

 Report Date:
 03/22/24

 Collection Date:
 02/19/24

 DateReceived:
 03/11/24

 Matrix:
 Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/14/24 03:39 / aem
Cadmium	ND	ug/filter		1.0		E200.8	03/14/24 03:39 / aem
Copper	1.6	ug/filter		1.0		E200.8	03/14/24 03:39 / aem
Lead	0.097	ug/filter	J	1.0		E200.8	03/14/24 13:10 / aem
Manganese	0.37	ug/filter	J	1.0		E200.8	03/14/24 03:39 / aem
Molybdenum	0.96	ug/filter	J	1.0		E200.8	03/14/24 03:39 / aem
Zinc	1.3	ug/filter		1.0		E200.8	03/14/24 03:39 / aem

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24030571-006
Client Sample ID:	Particulate Filter C1733461 TSP Pine St Composite

 Report Date:
 03/22/24

 Collection Date:
 02/24/24

 DateReceived:
 03/11/24

 Matrix:
 Air

		MCL/								
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By			
METALS IN AIR										
Arsenic	ND	ug/filter		1.0		E200.8	03/14/24 03:44 / aem			
Cadmium	ND	ug/filter		1.0		E200.8	03/14/24 03:44 / aem			
Copper	1.3	ug/filter		1.0		E200.8	03/14/24 03:44 / aem			
Lead	ND	ug/filter		1.0		E200.8	03/14/24 13:16 / aem			
Manganese	0.24	ug/filter	J	1.0		E200.8	03/14/24 03:44 / aem			
Molybdenum	0.095	ug/filter	J	1.0		E200.8	03/14/24 03:44 / aem			
Zinc	ND	ug/filter		1.0		E200.8	03/14/24 03:44 / aem			

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24030571-007
Client Sample ID:	Particulate Filter C1733462 TSP Field Blank

 Report Date:
 03/22/24

 Collection Date:
 03/04/24
 13:25

 DateReceived:
 03/11/24

 Matrix:
 Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/14/24 03:50 / aem
Cadmium	ND	ug/filter		1.0		E200.8	03/14/24 03:50 / aem
Copper	ND	ug/filter		1.0		E200.8	03/14/24 03:50 / aem
Lead	ND	ug/filter		1.0		E200.8	03/14/24 03:50 / aem
Manganese	ND	ug/filter		1.0		E200.8	03/14/24 03:50 / aem
Molybdenum	ND	ug/filter		1.0		E200.8	03/14/24 13:22 / aem
Zinc	ND	ug/filter		1.0		E200.8	03/14/24 03:50 / aem

Prepared by Billings, MT Branch

Client:	Bison Engineering	
Project:	Montana Resources/Greely School PW	Coll
Lab ID:	B24030571-008	Da
Client Sample ID:	Particulate Filter C1733463 TSP Walnut St Composite	

 Report Date:
 03/22/24

 Collection Date:
 02/24/24

 DateReceived:
 03/11/24

 Matrix:
 Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/14/24 03:56 / aem
Cadmium	ND	ug/filter		1.0		E200.8	03/14/24 03:56 / aem
Copper	0.32	ug/filter	J	1.0		E200.8	03/14/24 13:28 / aem
Lead	ND	ug/filter		1.0		E200.8	03/14/24 03:56 / aem
Manganese	0.20	ug/filter	J	1.0		E200.8	03/14/24 03:56 / aem
Molybdenum	ND	ug/filter		1.0		E200.8	03/14/24 03:56 / aem
Zinc	ND	ug/filter		1.0		E200.8	03/14/24 03:56 / aem

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering	F
Project:	Montana Resources/Greely School PW	Coll
Lab ID:	B24030571-009	Da
Client Sample ID:	Particulate Filter C1733464 TSP Walnut St Composite	

 Report Date:
 03/22/24

 Collection Date:
 02/28/24

 DateReceived:
 03/11/24

 Matrix:
 Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/14/24 04:02 / aem
Cadmium	ND	ug/filter		1.0		E200.8	03/14/24 04:02 / aem
Copper	0.41	ug/filter	J	1.0		E200.8	03/14/24 13:49 / aem
Lead	ND	ug/filter		1.0		E200.8	03/14/24 04:02 / aem
Manganese	ND	ug/filter		1.0		E200.8	03/14/24 04:02 / aem
Molybdenum	ND	ug/filter		1.0		E200.8	03/14/24 04:02 / aem
Zinc	ND	ug/filter		1.0		E200.8	03/14/24 04:02 / aem

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client:	Bison Engineering
Project:	Montana Resources/Greely School PW
Lab ID:	B24030571-010
Client Sample ID:	Particulate Filter C1733465 TSP Pine St Composite

 Report Date:
 03/22/24

 Collection Date:
 02/28/24

 DateReceived:
 03/11/24

 Matrix:
 Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS IN AIR							
Arsenic	ND	ug/filter		1.0		E200.8	03/14/24 04:08 / aem
Cadmium	ND	ug/filter		1.0		E200.8	03/14/24 04:08 / aem
Copper	0.51	ug/filter	J	1.0		E200.8	03/14/24 13:55 / aem
Lead	ND	ug/filter		1.0		E200.8	03/14/24 04:08 / aem
Manganese	ND	ug/filter		1.0		E200.8	03/14/24 04:08 / aem
Molybdenum	ND	ug/filter		1.0		E200.8	03/14/24 04:08 / aem
Zinc	ND	ug/filter		1.0		E200.8	03/14/24 04:08 / aem

Report Definitions: RL - Analyte Reporting Limit

QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL)

Trust our People. Trust our Data. www.energylab.com

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

QA/QC Summary Report

Prepared by Billings, MT Branch

Client:	Bison Engineering				Work Order:	B2403	0571	Repo	rt Date:	: 03/22/24	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8							Analytic	al Run: I	CPMS207-B	_240313A
Lab ID:	QCS	7 Ini	tial Calibratio	on Verifica	tion Standard					03/14	/24 00:01
Arsenic			0.0493	mg/L	0.0050	99	90	110			
Cadmium	ı		0.0240	mg/L	0.0010	96	90	110			
Copper			0.0492	mg/L	0.010	98	90	110			
Lead			0.0482	mg/L	0.0010	96	90	110			
Mangane	se		0.248	mg/L	0.0050	99	90	110			
Molybder	num		0.0463	mg/L	0.0050	93	90	110			
Zinc			0.0505	mg/L	0.0050	101	90	110			
Lab ID:	CCV	7 Cc	ontinuing Cal	ibration Ve	erification Standa	rd				03/14	/24 01:47
Arsenic			0.0490	mg/L	0.0050	98	90	110			
Cadmium	ı		0.0498	mg/L	0.0010	100	90	110			
Copper			0.0508	mg/L	0.010	102	90	110			
Lead			0.0476	mg/L	0.0010	95	90	110			
Mangane	se		0.0452	mg/L	0.0050	90	90	110			
Molybder	านm		0.0483	mg/L	0.0050	97	90	110			
Zinc			0.0478	mg/L	0.0050	96	90	110			
Lab ID:	CCV	7 Cc	ontinuing Cal	ibration Ve	erification Standa	rd				03/14	/24 03:09
Arsenic			0.0471	mg/L	0.0050	94	90	110			
Cadmium	ו		0.0475	mg/L	0.0010	95	90	110			
Copper			0.0486	mg/L	0.010	97	90	110			
Lead			0.0467	mg/L	0.0010	93	90	110			
Mangane	se		0.0474	mg/L	0.0050	95	90	110			
Molybder	num		0.0470	mg/L	0.0050	94	90	110			
Zinc			0.0480	mg/L	0.0050	96	90	110			
Method:	E200.8									Batc	h: 187762
Lab ID:	MB-187762	7 Me	ethod Blank				Run: ICPM	S207-B_240313	A	03/14	/24 02:40
Arsenic			ND	ug/filter	0.08						
Cadmium	1		ND	ug/filter	0.009						
Copper			ND	ug/filter	0.3						
Lead			ND	ug/filter	0.09						
Mangane	se		ND	ug/filter	0.2						
Molybder	านm		ND	ug/filter	0.07						
Zinc			ND	ug/filter	0.8						
Lab ID:	LCS-187762	7 La	boratory Cor	ntrol Samp	le		Run: ICPM	S207-B_240313	A	03/14	/24 02:46
Arsenic			96.7	ug/filter	1.0	97	85	115			
Cadmium	1		50.0	ug/filter	1.0	100	85	115			
Copper			99.6	ug/filter	5.0	100	85	115			
Lead			96.4	ug/filter	1.0	96	85	115			
Mangane	se		484	ug/filter	5.0	97	85	115			
Molybder	num		96.1	ug/filter	1.0	96	85	115			
Zinc			98.5	ug/filter	8.0	99	85	115			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

QA/QC Summary Report

Prepared by Billings, MT Branch

Client:	Bison Engineering				Work Order:	B2403	80571	Repo	rt Date:	: 03/22/24	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8									Batc	h: 187762
Lab ID:	LCSD-187762	7 La	aboratory Co	ntrol Samp	le Duplicate		Run: ICPM	S207-B_240313	4	03/14	/24 02:52
Arsenic			95.5	ug/filter	1.0	95	85	115			
Cadmium	ı		49.0	ug/filter	1.0	98	85	115			
Copper			98.6	ug/filter	5.0	99	85	115			
Lead			96.4	ug/filter	1.0	96	85	115			
Mangane	se		484	ug/filter	5.0	97	85	115			
Molybder	num		94.1	ug/filter	1.0	94	85	115			
Zinc			98.6	ug/filter	8.0	99	85	115			
Method:	E200.8							Analytica	al Run: I	CPMS207-B	_240314A
Lab ID:	QCS	3 In	itial Calibrati	on Verifica	tion Standard					03/14	/24 10:53
Copper			0.0505	mg/L	0.010	101	90	110			
Lead			0.0475	mg/L	0.0010	95	90	110			
Molybder	num		0.0485	mg/L	0.0050	97	90	110			
Lab ID:	CCV	3 C	ontinuing Ca	libration Ve	erification Standa	ď				03/14	/24 12:23
Copper			0.0506	mg/L	0.010	101	90	110			
Lead			0.0461	mg/L	0.0010	92	90	110			
Molybder	num		0.0481	mg/L	0.0050	96	90	110			
Lab ID:	CCV	3 C	ontinuing Ca	libration Ve	erification Standa	ď				03/14	/24 13:34
Copper			0.0542	mg/L	0.010	108	90	110			
Lead			0.0461	mg/L	0.0010	92	90	110			
Molybder	num		0.0521	mg/L	0.0050	104	90	110			
Method:	E200.8									Batc	h: 187762
Lab ID:	MB-187762	3 M	ethod Blank				Run: ICPM	S207-B_240314	4	03/14	/24 12:35
Copper			ND	ug/filter	0.3			-			
Lead			ND	ug/filter	0.09						
Molybder	num		ND	ug/filter	0.07						

Work Order Receipt Checklist

Bison Engineering

B24030571

Login completed by:	Danielle N. Harris		Date I	Received: 3/11/2024
Reviewed by:	gmccartney		Red	ceived by: DNH
Reviewed Date:	3/14/2024		Carr	rier name: Hand Deliver
Shipping container/cooler in	good condition?	Yes 🗸	No 🗌	Not Present
Custody seals intact on all s	hipping container(s)/cooler(s)?	Yes	No 🗌	Not Present 🗹
Custody seals intact on all se	ample bottles?	Yes	No 🗌	Not Present 🗹
Chain of custody present?		Yes 🗹	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes 🗹	No 🗌	
Chain of custody agrees with	n sample labels?	Yes	No 🗹	
Samples in proper container	/bottle?	Yes 🗹	No 🗌	
Sample containers intact?		Yes 🗹	No 🗌	
Sufficient sample volume for	indicated test?	Yes 🗹	No 🗌	
All samples received within h (Exclude analyses that are c such as pH, DO, Res CI, Su	nolding time? onsidered field parameters Ilfite, Ferrous Iron, etc.)	Yes 🗹	No 🗌	
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes 🗹	No 🗌	Not Applicable
Container/Temp Blank tempe	erature:	2.6°C Blue Ice		
Containers requiring zero he bubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

For all samples, the sample identification begin with C1667 on the Chain of Custody. The sample containers for all samples begin with C1733 for the sample identification. Proceeded with the sample identification on the sample containers or until further notified by the client. A voicemail was left for Don Milmine on 3/11/24.

ngineering, inc. mine 8-4833 B-4813 MT 59102 MT 59102 ©bison-eng.com py ⊡Email DEDD/EDT (contact laboratory) □ Other	Igineering, inc. Analyze per history 8-4833 B-4833 Analyze per history Analyze per history	
mine 8-4833 Analyze per history terprise Avenue Suite 2 Analyze per history 3@bison-eng.com op Email other	nine B-4833 B-4833 Careford Suite 2 MT 59102 MT 59102 Officient Suite 2 MT 59102 Officient Suite 2 MT 59102 Officient Suite 2 Deficient Suite Suite 3 Deficient Suite 3 Defici	Engineering, In
8-4833 Analyze per history terprise Avenue Suite 2 MT 59102 a@bison-eng.com py ⊡email	8-4833 Analyze per history terprise Avenue Suite 2 Analyze per history MT 59102 Om Option eng.com Demail Contact laboratory D Other D EDD/EDT (contact laboratory) D Other Analysis Requested	Ilmine
terprise Avenue Suite 2 MT 59102 a@bison-eng.com py @Email	terprise Avenue Suite 2 MT 59102 @bison-eng.com oy @Email Dy @Email Dy @Email Dy @Email Dy @Email Dy @Email Dy @Email Dy @Email	08-4833
MT 59102 a@bison-eng.com py @Email DEDD/EDT (contact laboratory) D Other	MT 59102 @Dison-eng.com Dy Etmail DPD/EDT (contect taboratory) E Other	nterprise Aver
a@bison-eng.com py □Email □ EDD/EDT (contact laborationy) □ Other	@Dison-eng.com by 미Email DED/EDT (contact taboratory) D Other Analysis Requested	, MT 59102
py DEmail	by EEmail EDD/EDT (contact laboratory) Cother Analysis Requested	ie@bison-eng
EDD/EDT (contact laboratory) Other	D/EDT (contact laboratory) D Other	ppy DEmail
	Analysis Requested	EDD/EDT (cor
All turnaround times are standard unless marked as		_
All turnaround times are standard unless marked as RUSH.	RUSH.	_
All turnaround times are standard unless marked as RUSH. Energy Laboratories MUST be contacted prior to	Energy Laboratories MUST be contacted prior to	un
All turnaround times are standard unless marked as RUSH. Energy Laboratories MUST be contacted prior to RUSH sample submittal for charges and scheduling – See Instructions Page	um Mum See Instructions Pages and scheduling – See Instructions Page See Instructions Pa	Cadmi
Cadmium Copper Copper Manganese MuST be contacted prior to RUSH sample summarked as RUSH sample summarked as RUSH sample summarked as RUSH sample summarked as RUSH sample summarked as See Instructions Page Istructions Page Copper ELI LAB ID Istructions Page Copper Cop	Cadmium Coopper Manganese Manganese Molybdenum Zinc See Attached See Instructions Page Instructions Page Instructions Page See Instructions Page See Instructions Page See Instructions Page Copper See Instructions Page See Instructions Page Copper See Instructions Page See Instructions Page See Instructions Page Instructions Page See Only Instructions Page See Only Instructions Page See Only Instructions Page See Only Instructions Page See Only Instructions Page See Only Instructions Page Instructions Page Instructions Page See Only Instructions Page See O	x x
X All turnaround times are standard unless marked as RUSH All turnaround times are standard unless marked as RUSH sample submittel for charges and scheduling - Copper X X X X X See Attached RUSH X See Attached RUSH X See Instructions Page Instructions Page X See Instructions Page Instructions Page	 Cadmium Cadmium Copper Molybdenum Molybdenum See httached Copper Anganese Lead Lead Copper See httached Lead 	x x
X X X	X Caddmium X X	×
X X Cadmium X X Cadmium X X KUSH. X X Manganese X X Manganese X X Manganese X X X X <t< td=""><td>X X Cadmium X X Cadmium X X X</td><td>×</td></t<>	X X Cadmium X X Cadmium X X X	×
X X Cadmium X X X <td>X X Cadamium X X X <td>×</td></td>	X X Cadamium X X X <td>×</td>	×
All turnaround times are standard unless marked as RUSH sample submitted for Cadmium All turnaround times are standard unless marked as RUSH sample submitted for charges and scheduling for charges and scheduling for taken X X X	X X X Cadmium X X X Cadmium X X X X X<	×
X X	X X X X Cadmium X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X<	××
X X X X X X All turnaround times are standard unless marked as standard unless marked as tandard unless tandard unless tandard unless tandard unless t	X X	××
All turnaround times are standard unless marked as RUSH. All turnaround times are standard unless marked as RUSH. All turnaround times are standard unless marked as RUSH. X X X X X X X X X X	X X	××
All turnaround times are standard unless marked as RuSH sample contacted prior to RUSH. All turnaround times are standard unless marked as RUSH. All turnaround times are standard unless and scheduling - All turnaround times are standard unless and turnaround times are turnaround turnaround times are turnaround turnaround turnaround times are standaround turnaro	X X	××
X X	X X	Received by
All turnaround times are standard unless marked as RuSH. Energy Laboratories MUST be contacted prior to RUSH sample submittal for Cadmium NUST be contacted prior to RUSH sample submittal for charges and scheduling - See Attached MUST be contacted prior to RUSH sample submittal for charges and scheduling - see Instructions Page Interviewed by the All turnaround times are standard unless marked as MUST be contacted prior to RUSH sample submittal for charges and scheduling - see Instructions Page Interviewed by the All turnaround times are standard unless MUST be contacted prior to RUSH sample submittal for charges and scheduling - see Attached MUST be contacted prior to RUSH sample submittal for charges and scheduling - see Instructions Page Interviewed by the All turnaround times are standard and MUST be contacted prior to standard and MUST be contacted and All turnaround times are standard and MUST be contacted and MUST be contacted and MUST be contacted and MUST be contacted and All turnaround times are standard and MUST be contacted and MUST be conta	RUSH.	Received b
All turnaround times are standard unless marked as Randard unless marked as RuSH sample submittal for charges and scheduling - See Attactions Page All turnaround times are standard unless marked as RuSH sample submittal for charges and scheduling - See Instructions Page All turnaround times are standard by the All turnaround times are standard by the turnaround t	RUSH RUSH Be contacted prior to RUSH BE contacted prior	ISE ONLY
All turnaround times are standard unliess marked as Randard unliess marked as Randard unliess marked as Randard unliess marked as Rules and scheduling - See Attached RUSH sample submittal for Cadmium RUSH and scheduling - See Attached RUSH sample submittal for Cadmium RUSH as and scheduling - See Attached RUSH as and scheduling - standard unling - See Attached RUGS Attached RUSH as and scheduling - standard unling - standa	RUSH.	

Page 16 of 16

ANALYTICAL SUMMARY REPORT

May 14, 2024

Bison Engineering 3143 E Lyndale Ave Helena, MT 59601-6401

Work Order: B24050157 Quote ID: B4795

Project Name: Montana Resources/ Greely School PW

Energy Laboratories Inc Billings MT received the following 10 samples for Bison Engineering on 5/1/2024 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matri x	Test
B24050157-001	Particulate filter C1733451 TSP Pine St	03/07/24 0:00	05/01/24	Air	Metals on air filter by ICP/ICPMS Nitric acid-extraction by 40CFR50G
B24050157-002	Particulate filter C1733452 TSP Walnut St	03/07/24 0:00	05/01/24	Air	Same As Above
B24050157-003	Particulate filter C1733453 TSP Pine St	03/14/24 0:00	05/01/24	Air	Same As Above
B24050157-004	Particulate filter C1733454 Lab Blank	02/27/24 0:00	05/01/24	Air	Same As Above
B24050157-005	Particulate filter C1733455 TSP Walnut St	03/14/24 0:00	05/01/24	Air	Same As Above
B24050157-006	Particulate filter C1733476 TSP Pine St	03/19/24 0:00	05/01/24	Air	Same As Above
B24050157-007	Particulate filter C1733477 TSP Walnut St	03/19/24 0:00	05/01/24	Air	Same As Above
B24050157-008	Particulate filter C1733478 TSP Pine St	03/27/24 0:00	05/01/24	Air	Same As Above
B24050157-009	Particulate filter C1733479 TSP Field Blank	03/20/24 0:00	05/01/24	Air	Same As Above
B24050157-010	Particulate filter C1733480 TSP Pine St	03/27/24 0:00	05/01/24	Air	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Zinc

0.34

0.72

ug/filter

ug/filter

J

J

1.0

1.0

0.0050

0.30

40CFR50

ICPMS207-B_240506A:450

ICPMS207-B_240506A: 450

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:	Bison Engineering					rioparoa i	by Dinnigo,			Lab ID:	B24050157-001		
Client Sample ID:	Particulate filter C173	33451	I TSP Pine	St					Collect	ion Date:	03/07/24		
Project:	Montana Resources/	Gree	ly School F	W					DateF	Received:	05/01/24		
Matrix:	Air								Rep	ort Date:	05/14/24		
Analyses	Re	sult	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR													
Arsenic	N	ID	ug/filter		1.0	0.058	E200.8	05/08/24 06:19 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 450	189242
Cadmium	N	ID	ug/filter		1.0	0.0063	E200.8	05/08/24 06:19 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 450	189242
Copper	5	5.1	ug/filter		1.0	0.16	E200.8	05/08/24 06:19 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 450	189242
Lead	0.	.25	ug/filter	J	1.0	0.042	E200.8	05/10/24 05:53 / ae	05/03/24 08:55	40CFR50	ICPMS208-B_240508	3A : 433	189242
Manganese	0.	.60	ug/filter	J	1.0	0.18	E200.8	05/08/24 06:19 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 450	189242

E200.8

E200.8

05/08/24 06:19 / ae 05/03/24 08:55

05/08/24 06:19 / ae 05/03/24 08:55 40CFR50

189242

Zinc

0.079

0.38

ug/filter

ug/filter

J

J

1.0

1.0

0.0050

0.30

05/08/24 06:37 / ae 05/03/24 08:55 40CFR50

05/08/24 06:37 / ae 05/03/24 08:55 40CFR50

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:	Bison Engineering					Перагест	Jy Dinnig3,			Lab ID:	B24050157-002		
Client Sample ID:	Particulate filter C17	733452	2 TSP Walr	nut St					Collect	ion Date:	03/07/24		
Project:	Montana Resources	s/ Gree	ly School F	⊃W					DateF	Received:	05/01/24		
Matrix:	Air								Rep	ort Date:	05/14/24		
Analyses	R	esult	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR													
Arsenic		ND	ug/filter		1.0	0.058	E200.8	05/08/24 06:37 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	SA : 453	189242
Cadmium		ND	ug/filter		1.0	0.0063	E200.8	05/08/24 06:37 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	SA : 453	189242
Copper		1.8	ug/filter		1.0	0.16	E200.8	05/08/24 06:37 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	SA : 453	189242
Lead	(0.16	ug/filter	J	1.0	0.042	E200.8	05/10/24 05:59 / ae	05/03/24 08:55	40CFR50	ICPMS208-B_240508	BA : 434	189242
Manganese	(0.40	ug/filter	J	1.0	0.18	E200.8	05/08/24 06:37 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	6A : 453	189242

E200.8

E200.8

ICPMS207-B_240506A: 453

ICPMS207-B_240506A: 453

189242

Zinc

ug/filter

ug/filter

1.0

1.0

0.0050

0.30

ND

ND

05/08/24 06:43 / ae 05/03/24 08:55 40CFR50

05/08/24 06:43 / ae 05/03/24 08:55 40CFR50

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:	Bison Engineering					~ j			Lab ID:	B24050157-003		
Client Sample ID:	Particulate filter C173	8453 TSP P	ine St					Collect	ion Date:	03/14/24		
Project:	Montana Resources/ 0	Greely Scho	ol PW					DateF	Received:	05/01/24		
Matrix:	Air							Rep	ort Date:	05/14/24		
Analyses	Res	ult Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	05/08/24 06:43 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 454	189242
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	05/08/24 06:43 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 454	189242
Copper	0.90) ug/filter	J	1.0	0.16	E200.8	05/08/24 06:43 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 454	189242
Lead	0.07	2 ug/filter	J	1.0	0.042	E200.8	05/10/24 06:17 / ae	05/03/24 08:55	40CFR50	ICPMS208-B_240508	3A : 437	189242
Manganese	ND	ug/filter		1.0	0.18	E200.8	05/08/24 06:43 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 454	189242

E200.8

E200.8

 Report
 RL - Analyte Reporting Limit

 Definitions:
 J - Estimated value - analyte was present but less than the Reporting Limit (RL)

ICPMS207-B_240506A: 454

ICPMS207-B_240506A: 454

189242

Zinc

ND

ug/filter

1.0

0.30

05/08/24 06:48 / ae 05/03/24 08:55 40CFR50

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:	Bison Engineering					i iopaiou i	ey Dininge,	In Branon		Lab ID:	B24050157-004		
Client Sample ID:	Particulate filter C17	733454	1 Lab Blanł	<					Collect	ion Date:	02/27/24		
Project:	Montana Resources	s/ Gree	ely School I	PW					DateF	Received:	05/01/24		
Matrix:	Air								Rep	ort Date:	05/14/24		
Analyses	R	esult	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR													
Arsenic		ND	ug/filter		1.0	0.058	E200.8	05/08/24 06:48 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	A : 455	189242
Cadmium		ND	ug/filter		1.0	0.0063	E200.8	05/08/24 06:48 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	A : 455	189242
Copper		ND	ug/filter		1.0	0.16	E200.8	05/08/24 06:48 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	A : 455	189242
Lead		ND	ug/filter		1.0	0.042	E200.8	05/08/24 06:48 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	A : 455	189242
Manganese		ND	ug/filter		1.0	0.18	E200.8	05/08/24 06:48 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	A : 455	189242
Molybdenum		ND	ug/filter		1.0	0.0050	E200.8	05/08/24 06:48 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	A : 455	189242

E200.8

ICPMS207-B_240506A: 455

Zinc

ND

ND

ug/filter

ug/filter

1.0

1.0

0.0050

0.30

40CFR50

ICPMS207-B_240506A: 456

ICPMS207-B_240506A: 456

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:	Bison Engineering				rioparoa	by Dinnigo,			Lab ID:	B24050157-005		
Client Sample ID:	Particulate filter C173	3455 TSP \	Nalnut St					Collect	ion Date:	03/14/24		
Project:	Montana Resources/	Greely Sch	ool PW					DateF	Received:	05/01/24		
Matrix:	Air						Rep	ort Date:	05/14/24			
Analyses	Res	ult Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	NE	ug/filter		1.0	0.058	E200.8	05/08/24 06:54 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 456	189242
Cadmium	NE	ug/filter		1.0	0.0063	E200.8	05/08/24 06:54 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 456	189242
Copper	0.6	2 ug/filter	· J	1.0	0.16	E200.8	05/10/24 06:23 / ae	05/03/24 08:55	40CFR50	ICPMS208-B_24050	3A : 438	189242
Lead	30.0	3 ug/filter	· J	1.0	0.042	E200.8	05/08/24 06:54 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 456	189242
Manganese	NE	ug/filter		1.0	0.18	E200.8	05/08/24 06:54 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 456	189242

E200.8

E200.8

05/08/24 06:54 / ae 05/03/24 08:55

05/08/24 06:54 / ae 05/03/24 08:55 40CFR50

189242

Zinc

0.32

ug/filter

J

1.0

0.30

05/08/24 07:00 / ae 05/03/24 08:55 40CFR50

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:	Bison Engineering					ricparca	by Dinnigs,			Lab ID:	B24050157-006		
Client Sample ID:	Particulate filter C17	733476	3 TSP Pine	e St					Collect	ion Date:	03/19/24		
Project:	Montana Resources	/ Gree	ely School	PW					DateF	Received:	05/01/24		
Matrix:	Air								Rep	ort Date:	05/14/24		
Analyses	R	esult	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR													
Arsenic		ND	ug/filter		1.0	0.058	E200.8	05/08/24 07:00 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	A : 457	189242
Cadmium	I	ND	ug/filter		1.0	0.0063	E200.8	05/08/24 07:00 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	A : 457	189242
Copper	:	3.1	ug/filter		1.0	0.16	E200.8	05/08/24 07:00 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	A : 457	189242
Lead	C	0.18	ug/filter	J	1.0	0.042	E200.8	05/10/24 06:29 / ae	05/03/24 08:55	40CFR50	ICPMS208-B_240508	A : 439	189242
Manganese	C	0.39	ug/filter	J	1.0	0.18	E200.8	05/08/24 07:00 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	A : 457	189242
Molybdenum		ND	ug/filter		1.0	0.0050	E200.8	05/08/24 07:00 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	A : 457	189242

E200.8

ICPMS207-B_240506A: 457

Prepared by Billings, MT Branch

Client:	Bison Engineering	9				[Lab ID:	B24050157-007		
Client Sample ID:	Particulate filter C	173347	7 TSP Wal	nut St					Collect	ion Date:	03/19/24		
Project:	Montana Resourc	es/ Gree	ely School	PW					DateF	Received:	05/01/24		
Matrix:	Air								Rep	ort Date:	05/14/24		
Analyses		Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR													
Arsenic		ND	ug/filter		1.0	0.058	E200.8	05/08/24 07:06 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	6A : 458	189242
Cadmium		ND	ug/filter		1.0	0.0063	E200.8	05/08/24 07:06 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	SA : 458	189242
Copper		1.3	ug/filter		1.0	0.16	E200.8	05/08/24 07:06 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	6A : 458	189242
Lead		0.18	ug/filter	J	1.0	0.042	E200.8	05/10/24 06:35 / ae	05/03/24 08:55	40CFR50	ICPMS208-B 240508	BA : 440	189242

ug/filter ICPMS208-B_240508A: 440 189242 0.18 J 1.0 0.042 E200.8 05/10/24 06:35 / ae 05/03/24 08:55 40CFR50 Manganese 0.52 ug/filter J 1.0 0.18 E200.8 05/08/24 07:06 / ae 05/03/24 08:55 40CFR50 ICPMS207-B_240506A:458 189242 Molybdenum ND ug/filter 1.0 0.0050 E200.8 05/08/24 07:06 / ae 05/03/24 08:55 40CFR50 ICPMS207-B_240506A: 458 189242 Zinc 0.48 ug/filter J 1.0 0.30 E200.8 05/08/24 07:06 / ae 05/03/24 08:55 40CFR50 ICPMS207-B_240506A: 458 189242

Zinc

ND

ND

ug/filter

ug/filter

1.0

1.0

0.0050

0.30

05/08/24 07:12 / ae 05/03/24 08:55 40CFR50

05/08/24 07:12 / ae 05/03/24 08:55 40CFR50

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:	Bison Engineering				rioparoa	by Dinnigo,			Lab ID:	B24050157-008		
Client Sample ID:	Particulate filter C1733	478 TSP Pi	ne St					Collect	ion Date:	03/27/24		
Project:	Montana Resources/ 0	Greely Schoo	ol PW					DateF	Received:	05/01/24		
Matrix:	Air							Rep	ort Date:	05/14/24		
Analyses	Res	ılt Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	05/08/24 07:12 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	6A : 459	189242
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	05/08/24 07:12 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	6A : 459	189242
Copper	0.67	ug/filter	J	1.0	0.16	E200.8	05/08/24 07:12 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	6A : 459	189242
Lead	0.06) ug/filter	J	1.0	0.042	E200.8	05/10/24 06:41 / ae	05/03/24 08:55	40CFR50	ICPMS208-B_240508	3A : 441	189242
Manganese	ND	ug/filter		1.0	0.18	E200.8	05/08/24 07:12 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506	6A : 459	189242

E200.8

E200.8

ICPMS207-B_240506A: 459

ICPMS207-B_240506A: 459

189242

Prepared by Billings, MT Branch

Client:	Bison Engineering	1				rioparoa	by Dinnigo,	WIT Branon		Lab ID:	B24050157-009		
Client Sample ID:	Particulate filter C	1733479	TSP Field	d Blank					Collect	ion Date:	03/20/24		
Project:	Montana Resourc	es/ Gree	ely School	PW					DateF	Received:	05/01/24		
Matrix:	Air								Rep	ort Date:	05/14/24		
Analyses		Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR													
Arsenic		ND	ug/filter		1.0	0.058	E200.8	05/08/24 07:18 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 460	189242
Cadmium		ND	ug/filter		1.0	0.0063	E200.8	05/08/24 07:18 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 460	189242
Copper		ND	ug/filter		1.0	0.16	E200.8	05/08/24 07:18 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 460	189242
Lead		ND	ug/filter		1.0	0.042	E200.8	05/08/24 07:18 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 460	189242

Lead	ND	ug/filter	1.0	0.042	E200.8	05/08/24 07:18 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506A : 460	189242
Manganese	ND	ug/filter	1.0	0.18	E200.8	05/08/24 07:18 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506A : 460	189242
Molybdenum	ND	ug/filter	1.0	0.0050	E200.8	05/08/24 07:18 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506A : 460	189242
Zinc	ND	ug/filter	1.0	0.30	E200.8	05/08/24 07:18 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_240506A : 460	189242

Zinc

ND

ND

ug/filter

ug/filter

1.0

1.0

0.0050

0.30

05/08/24 07:24 / ae 05/03/24 08:55 40CFR50

05/08/24 07:24 / ae 05/03/24 08:55 40CFR50

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:	Bison Engineering									Lab ID:	B24050157-010		
Client Sample ID:	Particulate filter C17	33480) TSP Pine	St					Collect	ion Date:	03/27/24		
Project:	Montana Resources	/ Gree	ely School F	⊃W					DateF	Received:	05/01/24		
Matrix:	Air								Rep	ort Date:	05/14/24		
Analyses	Re	esult	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR													
Arsenic	1	ND	ug/filter		1.0	0.058	E200.8	05/08/24 07:24 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 461	189242
Cadmium	1	ND	ug/filter		1.0	0.0063	E200.8	05/08/24 07:24 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 461	189242
Copper	0).55	ug/filter	J	1.0	0.16	E200.8	05/10/24 06:47 / ae	05/03/24 08:55	40CFR50	ICPMS208-B_24050	8A : 442	189242
Lead	0.	.076	ug/filter	J	1.0	0.042	E200.8	05/08/24 07:24 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 461	189242
Manganese	0).22	ug/filter	J	1.0	0.18	E200.8	05/08/24 07:24 / ae	05/03/24 08:55	40CFR50	ICPMS207-B_24050	6A : 461	189242

E200.8

E200.8

ICPMS207-B_240506A:461

ICPMS207-B_240506A:461

189242

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: E	Bison Engineering			Work Order:	B2405	0157	Repo	ort Date:	05/14/24	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8						Analytic	al Run: I	CPMS207-B_	_240506A
Lab ID:	QCS	Initial Calibrat	ion Verifica	ation Standard					05/08	3/24 00:39
Arsenic		0.0486	mg/L	0.0050	97	90	110			
Cadmium		0.0232	mg/L	0.0010	93	90	110			
Copper		0.0512	mg/L	0.010	102	90	110			
Lead		0.0490	mg/L	0.0010	98	90	110			
Manganese	9	0.264	mg/L	0.0050	106	90	110			
Molybdenu	m	0.0487	mg/L	0.0050	97	90	110			
Zinc		0.0494	mg/L	0.0050	99	90	110			
Lab ID:	CCV	Continuing Ca	alibration V	erification Standa	rd				05/08	3/24 05:15
Arsenic		0.0470	mg/L	0.0050	94	90	110			
Cadmium		0.0482	mg/L	0.0010	96	90	110			
Copper		0.0486	mg/L	0.010	97	90	110			
Lead		0.0492	mg/L	0.0010	98	90	110			
Manganese	9	0.0478	mg/L	0.0050	96	90	110			
Molybdenu	m	0.0484	mg/L	0.0050	97	90	110			
Zinc		0.0478	mg/L	0.0050	96	90	110			
Lab ID:	CCV	Continuing Ca	alibration V	erification Standa	rd				05/08	3/24 06:25
Arsenic		0.0461	mg/L	0.0050	92	90	110			
Cadmium		0.0476	mg/L	0.0010	95	90	110			
Copper		0.0488	mg/L	0.010	98	90	110			
Lead		0.0481	mg/L	0.0010	96	90	110			
Manganese	9	0.0478	mg/L	0.0050	96	90	110			
Molybdenu	m	0.0477	mg/L	0.0050	95	90	110			
Zinc		0.0466	mg/L	0.0050	93	90	110			
Method:	E200.8								Batc	h: 189242
Lab ID:	MB-189242	Method Blank	í.			Run: ICPM	IS207-B_24050	6A	05/08	3/24 04:45
Arsenic		ND	ug/filter	0.06						
Cadmium		ND	ug/filter	0.006						
Copper		ND	ug/filter	0.2						
Lead		ND	ug/filter	0.04						
Manganese	9	ND	ug/filter	0.2						
Molybdenu	m	ND	ug/filter	0.005						
Zinc		ND	ug/filter	0.3						
Lab ID:	LCS-189242	Laboratory Co	ontrol Sam	ole		Run: ICPM	IS207-B_24050	6A	05/08	3/24 04:51
Arsenic		98.7	ug/filter	1.0	99	85	115			
Cadmium		48.8	ug/filter	1.0	98	85	115			
Copper		98.8	ug/filter	5.0	99	85	115			
Lead		98.6	ug/filter	1.0	99	85	115			
Manganese	e	507	ug/filter	5.0	101	85	115			
Molybdenu	m	100	ug/filter	1.0	100	85	115			
Zinc		104	ug/filter	5.0	104	85	115			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

QA/QC Summary Report

Prepared by Billings, MT Branch

Client:	Bison Engineering			Work Order:	B2405	50157	Repo	rt Date	: 05/14/24	
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8								Bato	:h: 189242
Lab ID:	LCSD-189242	Laboratory C	ontrol Sam	ple Duplicate		Run: ICPM	IS207-B_24050	6A	05/08	3/24 04:57
Arsenic		99.6	ug/filter	1.0	100	85	115			
Cadmium		49.1	ug/filter	1.0	98	85	115			
Copper		99.3	ug/filter	5.0	99	85	115			
Lead		95.8	ug/filter	1.0	96	85	115			
Manganes	e	504	ug/filter	5.0	101	85	115			
Molybdenu	ım	99.6	ug/filter	1.0	100	85	115			
Zinc		110	ug/filter	5.0	110	85	115			
Method:	E200.8						Analytic	al Run: I	CPMS208-B	_240508A
Lab ID:	QCS	Initial Calibra	tion Verifica	ation Standard					05/09	9/24 02:12
Copper		0.0512	mg/L	0.010	102	90	110			
Lead		0.0502	mg/L	0.0010	100	90	110			
Lab ID:	QCS	Initial Calibra	tion Verifica	ation Standard					05/09	9/24 22:00
Copper		0.0513	mg/L	0.010	103	90	110			
Lead		0.0499	mg/L	0.0010	100	90	110			
Lab ID:	ccv	Continuing C	alibration V	erification Standa	rd				05/10	0/24 04:52
Copper		0.0500	mg/L	0.010	100	90	110			
Lead		0.0490	mg/L	0.0010	98	90	110			
Lab ID:	CCV	Continuing C	alibration V	erification Standa	rd				05/10	0/24 06:05
Copper		0.0506	mg/L	0.010	101	90	110			
Lead		0.0483	mg/L	0.0010	97	90	110			
Method:	E200.8								Bato	h: 189242
Lab ID:	MB-189242	Method Blanl	k			Run: ICPM	IS208-B_24050	BA	05/10	0/24 04:40
Copper		ND	ug/filter	0.2						
Lead		ND	ug/filter	0.04						

Work Order Receipt Checklist

Bison Engineering

B24050157

Login completed by:	Chrystal N. Sheaff		Date R	Received: 5/1/2024
Reviewed by:	cindy		Rec	eived by: AAG
Reviewed Date:	5/5/2024		Carri	er name: Hand Deliver
Shipping container/cooler in	good condition?	Yes 🗸	No 🗌	Not Present
Custody seals intact on all sl	nipping container(s)/cooler(s)?	Yes	No 🗌	Not Present 🗹
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present 🗹
Chain of custody present?		Yes 🖌	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes 🖌	No 🗌	
Chain of custody agrees with	n sample labels?	Yes 🖌	No 🗌	
Samples in proper container/	/bottle?	Yes 🔽	No 🗌	
Sample containers intact?		Yes 🔽	No 🗌	
Sufficient sample volume for	indicated test?	Yes 🔽	No 🗌	
All samples received within h (Exclude analyses that are consuch as pH, DO, Res CI, Su	nolding time? onsidered field parameters lfite, Ferrous Iron, etc.)	Yes 🗹	No 🗌	
Temp Blank received in all sl	hipping container(s)/cooler(s)?	Yes 🖌	No 🗌	Not Applicable
Container/Temp Blank tempe	erature:	3.2°C Blue Ice		
Containers requiring zero hea bubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted 🗹
Water - pH acceptable upon	receipt?	Yes 🗌	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

Account Information (Billing information)	Report Info	mation (ii	different	han Accou	nt Informa	ion)		Comm	ients
Company/Name Bison Engineering, Inc.	Company/Name	Bison Engir	leering,	Inc.					
Contact Shelley Argott-Brown	Contact	Don Milmin	Ø						
hone (406) 442-5768	Phone	406) 208-4	833					Analy	ze per history
Aailing Address 3143 E Lyndale Avenue	Mailing Address	2751 Enter	orise Av	enue Su	ite 2				
City, State, Zip Helena MT, 59601	City, State, Zip	3illings , MT	59102					_	
Email sbrown-argott@bison-eng.com	Email	dmilmine@	bison-e	ng.com					
Receive Invoice DHard Copy EEmail Receive Report DHard Copy DEmail	Receive Report	DHard Copy	Email						
Purchase Order Quote Bottle Order MTR223018	Special Report/Form	ats: NELAC	DD/EDT (contact labor	atory) 🗖 (Other			
Project Information	Matrix Codes			Ana	lysis Re	equeste	P		
Project Name, PWSID, Permit, etc. Momtana Resources/Greely School PW	A- AIC		-						All turnaround times are standard unless marked
Sampler Name Sampler Phone	S - Solls/		-					~	RUSH. Energy Laboratories
Sample Origin State Montana EPA/State Compliance Yes DNo	V - Vegetation		-	_					MUST be contacted prior
IRANIUM MINING CLIENTS MUST indicate sample type. D NOT Source or Byproduct Material D Source/Processed Ore (Ground or Refined) **CALL BEFORE SENDING	B - Bioassay O - Other DW - Water				əsəl	ພກບອ		Attached	RUSH sample submittal 1 charges and scheduling See Instructions Page
Sample Identification	Number of Matrix	oinear	obbeu	peə	langa	lolybd	our	eee v	ELI LAB ID
(Name, Location, Interval, etc.) Date Time	Above Above	A X		× -	v×	v×	, ×		RO ANSNE
	en tetle	>		×	×	×	×		CHUCH 20
2 Particulate filler C1/33432 ISP Valifiut St 3/1/24 Compared	enterlo	× ×		×	×	×	×		
Destination filter C17334541 of Blank 2077/24 24	ou Teffe	×	×	×	×	×	×		
5 Particulate filter C1733455 TSP Walnut St 3/14/24	1 on Tetto	×	×	×	×	×	×		
Particulate filter C1733476 TSP Pine St 3/19/24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	1 on left	×	×	×	×	×	×		
7 Particulate filter C1733477TSP Walnut St 3/19/24	1 buteth	×	×	×	×	×	×		
8 Particulate filter C1733478 TSP Pine St 3/27/24 24 M.	1 on terla	×	×	×	×	×	×		
9 Particulate filter C1733479 TSP Field Blank 3/20/24 24 45	- 1 BW Take	×	×	×	×	×	×		
10 Particulate filter C1733480 TSP Pine St 3/27/24	e 1 f./ter	×	×	×	×	×	×	_	
Custody Rekindulshed by/grint)	nature V. Ma	mine	Receive	d by (print)			Date/Time		Signature
be signed Relinquished by (print) Date/Time Sig	nature		Beteive	d py Labora	tory (pring)		Date/Time	74	Signapole TUM
	LABO	RATORY USI	ONLY	Q	mont Time		Amond	2 Rac	aint Number (cash/chack only)
Shipped By Cooler ID(s) Custody Seals Initact Receipt I	smp temp blank	N N	5	Coch	Chack		4		

APPENDIX C: LABORATORY ANALYSIS REPORTS - DUSTFALL

ANALYTICAL SUMMARY REPORT

February 28, 2024

Bison Engineerir	ng				
3143 E Lyndale	Ave				
Helena, MT 596	01-6401				
Work Order:	H24020176	Quote ID: H16951			
Project Name:	Montana Resources D	ustfall			
Energy Laborato	ries Inc Helena MT rece	eived the following 4 sa	amples for Bis	on Engineerir	ng on 2/7/2024 for analysis.
Lab ID	Client Sample ID	Collect Date R	eceive Date	Matrix	Test
H24020176-001	DF-GREELEY-006	02/01/24 13:00	02/07/24	Solid	Metals by ICP/ICPMS, Total Client Provided Field Parameters Total Metals Digestion by SW3050B Soil Preparation USDA1
H24020176-002	DF-PINE-006	02/01/24 12:45	02/07/24	Soil	Metals by ICP/ICPMS, Total Client Provided Field Parameters Total Metals Digestion by SW3050B
H24020176-003	DF-WALNUT-006	02/01/24 13:15	02/07/24	Soil	Same As Above
H24020176-004	DF-FB-006	02/01/24 13:20	02/07/24	Soil	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Prepared by Helena, MT Branch

Client:	Bison Engineering
Project:	Montana Resources Dustfall
Lab ID:	H24020176-001
Client Sample ID:	DF-GREELEY-006

 Report Date:
 02/28/24

 Collection Date:
 02/01/24 13:00

 DateReceived:
 02/07/24

 Matrix:
 Solid

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS, TOTAL - EPA SW846							
Arsenic	29	mg/kg		10		SW6020	02/24/24 17:58 / dck
Cadmium	7	mg/kg		1		SW6020	02/24/24 17:58 / dck
Copper	4260	mg/kg		10		SW6020	02/24/24 17:58 / dck
Lead	152	mg/kg		8		SW6020	02/24/24 17:58 / dck
Manganese	562	mg/kg		10		SW6020	02/24/24 17:58 / dck
Molybdenum	4280	mg/kg		5		SW6020	02/24/24 17:58 / dck
Zinc	762	mg/kg		40		SW6020	02/24/24 17:58 / dck
CLIENT PROVIDED FIELD PARAMETERS							
Wet Wt, g	228	g	*	0.00010	0.0001	FIELD	02/08/24 00:00 / kjb
Dry Wt, g	0.0243	g	*	0.00010	0.0001	FIELD	02/08/24 00:00 / kjb

Report Definitions: RL - Analyte Reporting Limit QCL - Quality Control Limit

 * - The result exceeds the Maximum Contaminant Level (MCL)

Prepared by Helena, MT Branch

Client:	Bison Engineering
Project:	Montana Resources Dustfall
Lab ID:	H24020176-002
Client Sample ID:	DF-PINE-006

 Report Date:
 02/28/24

 Collection Date:
 02/01/24 12:45

 DateReceived:
 02/07/24

 Matrix:
 Soil

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS, TOTAL - EPA SW846							
Arsenic	15	mg/kg		5		SW6020	02/24/24 18:02 / dck
Cadmium	2	mg/kg		1		SW6020	02/24/24 18:02 / dck
Copper	3030	mg/kg		5		SW6020	02/24/24 18:02 / dck
Lead	73	mg/kg		4		SW6020	02/24/24 18:02 / dck
Manganese	341	mg/kg		4		SW6020	02/24/24 18:02 / dck
Molybdenum	1410	mg/kg		2		SW6020	02/24/24 18:02 / dck
Zinc	474	mg/kg		20		SW6020	02/24/24 18:02 / dck
CLIENT PROVIDED FIELD PARAMETERS							
Wet Wt, g	281	g	* (0.00010	0.0001	FIELD	02/08/24 00:00 / kjb
Dry Wt, g	0.0566	g	* (0.00010	0.0001	FIELD	02/08/24 00:00 / kjb

Prepared by Helena, MT Branch

Client:	Bison Engineering
Project:	Montana Resources Dustfall
Lab ID:	H24020176-003
Client Sample ID:	DF-WALNUT-006

 Report Date:
 02/28/24

 Collection Date:
 02/01/24 13:15

 DateReceived:
 02/07/24

 Matrix:
 Soil

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS, TOTAL - EPA SW846							
Arsenic	11	mg/kg		6		SW6020	02/24/24 18:06 / dck
Cadmium	2	mg/kg		1		SW6020	02/24/24 18:06 / dck
Copper	2670	mg/kg		5		SW6020	02/24/24 18:06 / dck
Lead	73	mg/kg		4		SW6020	02/24/24 18:06 / dck
Manganese	447	mg/kg		5		SW6020	02/24/24 18:06 / dck
Molybdenum	1320	mg/kg		2		SW6020	02/24/24 18:06 / dck
Zinc	506	mg/kg		20		SW6020	02/24/24 18:06 / dck
CLIENT PROVIDED FIELD PARAMETERS							
Wet Wt, g	250	g	*	0.00010	0.0001	FIELD	02/08/24 00:00 / kjb
Dry Wt, g	0.0499	g	*	0.00010	0.0001	FIELD	02/08/24 00:00 / kjb

Report Definitions: RL - Analyte Reporting Limit QCL - Quality Control Limit

 * - The result exceeds the Maximum Contaminant Level (MCL)

Prepared by Helena, MT Branch

Client:	Bison Engineering	Re
Project:	Montana Resources Dustfall	Colle
Lab ID:	H24020176-004	Date
Client Sample ID:	: DF-FB-006	

 Report Date:
 02/28/24

 Collection Date:
 02/01/24 13:20

 DateReceived:
 02/07/24

 Matrix:
 Soil

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS, TOTAL - EPA SW846							
Arsenic	ND	mg/kg	D	20		SW6020	02/28/24 13:38 / dck
Cadmium	ND	mg/kg	D	3		SW6020	02/28/24 13:38 / dck
Copper	87	mg/kg		80		SW6020	02/28/24 13:38 / dck
Lead	ND	mg/kg	D	50		SW6020	02/28/24 13:38 / dck
Manganese	590	mg/kg		100		SW6020	02/28/24 13:38 / dck
Molybdenum	ND	mg/kg	D	20		SW6020	02/28/24 13:38 / dck
Zinc	ND	mg/kg	D	300		SW6020	02/28/24 13:38 / dck
CLIENT PROVIDED FIELD PARAMETERS							
Wet Wt, g	169	g	*	0.00010	0.0001	FIELD	02/08/24 00:00 / kjb
Dry Wt, g	0.0038	g	*	0.00010	0.0001	FIELD	02/08/24 00:00 / kjb

Report Definitions: RL - Analyte Reporting Limit QCL - Quality Control Limit

* - The result exceeds the Maximum Contaminant Level (MCL)

MCL - Maximum Contaminant Level

ND - Not detected at the Reporting Limit (RL)

D - Reporting Limit (RL) increased due to sample matrix

QA/QC Summary Report

Prepared by Helena, MT Branch

Client: Bison Engineering					Work Order:	H24020176		Repo			
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020							Analytic	al Run: IC	PMS205-H	_240228B
Lab ID:	ICV	7 In	7 Initial Calibration Verification Standard							02/28	/24 12:20
Arsenic			0.0575	mg/L	0.0010	96	90	110			
Cadmium	1		0.0292	mg/L	0.0010	97	90	110			
Copper			0.0585	mg/L	0.0010	98	90	110			
Lead			0.0566	mg/L	0.0010	94	90	110			
Mangane	se		0.289	mg/L	0.0010	96	90	110			
Molybder	num		0.0574	mg/L	0.0010	96	90	110			
Zinc			0.0574	mg/L	0.0013	96	90	110			
Lab ID:	ICSA	7 In	terference Ch	neck Sam	ple A					02/28	/24 12:29
Arsenic			0.0000860	mg/L	0.0010						
Cadmium	1		0.000124	mg/L	0.0010						
Copper			0.000184	mg/L	0.0010						
Lead			0.0000308	mg/L	0.0010						
Mangane	se		0.000368	mg/L	0.0010		0	0			
Molybder	num		0.890	mg/L	0.0010	111	70	130			
Zinc			0.000775	mg/L	0.0013						
Lab ID:	ICSAB	7 In	terference Ch	neck Sam	ple AB					02/28	/24 12:35
Arsenic			0.0104	mg/L	0.0010	104	70	130			
Cadmium	1		0.0103	mg/L	0.0010	103	70	130			
Copper			0.0201	mg/L	0.0010	101	70	130			
Lead			0.0000194	mg/L	0.0010		0	0			
Mangane	se		0.0206	mg/L	0.0010	103	70	130			
Molybder	num		0.883	mg/L	0.0010	110	70	130			
Zinc			0.0106	mg/L	0.0013	105	70	130			
Lab ID:	CCV	7 Continuing Calibration Verification Standard								02/28	/24 13:26
Arsenic			0.0496	mg/L	0.0010	99	90	110			
Cadmium	1		0.0492	mg/L	0.0010	98	90	110			
Copper			0.0500	mg/L	0.0010	100	90	110			
Lead			0.0483	mg/L	0.0010	97	90	110			
Mangane	se		0.0490	mg/L	0.0010	98	90	110			
Molybder	num		0.0502	mg/L	0.0010	100	90	110			
Zinc			0.0496	mg/L	0.0013	99	90	110			
Method:	SW6020									Bat	ch: 70376
Lab ID:	MB-70376	7 M	lethod Blank				Run: ICPM	S205-H_240228	3B	02/28	/24 13:35
Arsenic			ND	mg/kg	0.06						
Cadmium	1		ND	mg/kg	0.01						
Copper			ND	mg/kg	0.3						
Lead			ND	mg/kg	0.2						
Mangane	se		ND	mg/kg	0.4						
Molybder	num		ND	mg/kg	0.09						
Zinc			ND	mg/kg	1						

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Prepared by Helena, MT Branch

Client:	Bison Engineering				Work Order:	H2402	20176	Repo	rt Date:	02/28/24	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020							Analytic	al Run: IC	CPMS206-H	_240224A
Lab ID:	ICV	7 In	nitial Calibratio	on Verifica	ation Standard					02/24	/24 15:29
Arsenic			0.0596	mg/L	0.0010	99	90	110			
Cadmium	ı		0.0298	mg/L	0.0010	99	90	110			
Copper			0.0605	mg/L	0.0010	101	90	110			
Lead			0.0550	mg/L	0.0010	92	90	110			
Mangane	se		0.298	mg/L	0.0010	99	90	110			
Molybder	านm		0.0576	mg/L	0.0010	96	90	110			
Zinc			0.0598	mg/L	0.0010	100	90	110			
Lab ID:	ICSA	7 In	nterference Cl	heck Sam	ple A					02/24	/24 15:40
Arsenic			-7.59E-06	mg/L	0.0010						
Cadmium	ı		0.000203	mg/L	0.0010						
Copper			0.0000270	mg/L	0.0010						
Lead			0.0000213	mg/L	0.0010						
Mangane	se		0.000325	mg/L	0.0010		0	0			
Molybder	num		0.905	mg/L	0.0010	113	70	130			
Zinc			-0.00160	mg/L	0.0010						
Lab ID:	ICSAB	7 In	nterference Cl	heck Sam	ple AB					02/24	/24 15:47
Arsenic			0.0113	mg/L	0.0010	113	70	130			
Cadmium	ı		0.0115	mg/L	0.0010	115	70	130			
Copper			0.0223	mg/L	0.0010	111	70	130			
Lead			0.0000298	mg/L	0.0010		0	0			
Mangane	se		0.0226	mg/L	0.0010	113	70	130			
Molybder	num		0.950	mg/L	0.0010	119	70	130			
Zinc			0.0105	mg/L	0.0010	105	70	130			
Lab ID:	CCV	7 C	ontinuing Cal	ibration V	erification Standa	rd				02/24	/24 17:37
Arsenic			0.0516	mg/L	0.0010	103	90	110			
Cadmium	ו		0.0525	mg/L	0.0010	105	90	110			
Copper			0.0522	mg/L	0.0010	104	90	110			
Lead			0.0477	mg/L	0.0010	95	90	110			
Mangane	se		0.0514	mg/L	0.0010	103	90	110			
Molybder	num		0.0525	mg/L	0.0010	105	90	110			
Zinc			0.0509	mg/L	0.0010	102	90	110			
Method:	SW6020									Bat	.ch: 70376
Lab ID:	MB-70376	7 M	lethod Blank				Run: ICPM	S206-H_240224	ŧΑ	02/24	/24 17:44
Arsenic			ND	mg/kg	0.3						
Cadmium	1		ND	mg/kg	0.01						
Copper			ND	mg/kg	0.3						
Lead			ND	mg/kg	0.2						
Mangane	se		ND	mg/kg	0.2						
Molybder	num		ND	mg/kg	0.1						
Zinc			ND	mg/kg	0.9						

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Prepared by Helena, MT Branch

Client:	Bison Engineering				Work Orde	r: H2402	20176	Report	Date:	: 02/28/24	
Analyte		Count	Result	Units	RI	- %REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020									Bat	ch: 70376
Lab ID:	LCS-70376	7 Lab	oratory Co	ntrol Sample	•		Run: ICPM	S206-H_240224A		02/24	/24 17:48
Arsenic			153	mg/kg	1.0	78	66.4	104			
Cadmium	า		97.4	mg/kg	1.0	98	79.2	121			
Copper			115	mg/kg	1.0	84	73.9	113			
Lead			97.0	mg/kg	1.0	92	71.6	128			
Mangane	ese		377	mg/kg	1.0	87	74.4	123			
Molybder	num		112	mg/kg	1.0	88	61.3	124			
Zinc			235	mg/kg	1.9	102	83.1	125			
Lab ID:	LFB-70376	7 Lab	oratory For	rtified Blank			Run: ICPM	S206-H_240224A		02/24	/24 17:51
Arsenic			23.9	mg/kg	1.0	96	80	120			
Cadmium	า		13.4	mg/kg	1.0	108	80	120			
Copper			24.3	mg/kg	1.0	97	80	120			
Lead			24.8	mg/kg	1.0	99	80	120			
Mangane	ese		114	mg/kg	1.0	91	80	120			
Molybder	num		24.7	mg/kg	1.0	99	80	120			
Zinc			24.5	mg/kg	1.0	98	80	120			
Lab ID:	LFBD-70376	7 Lab	oratory For	rtified Blank	Duplicate		Run: ICPM	S206-H_240224A		02/24	/24 17:55
Arsenic			24.0	mg/kg	1.0	96	80	120			
Cadmium	า		13.2	mg/kg	1.0	105	80	120			
Copper			24.5	mg/kg	1.0	98	80	120			
Lead			25.7	mg/kg	1.0	103	80	120			
Mangane	ese		118	mg/kg	1.0	95	80	120			
Molybder	num		24.1	mg/kg	1.0	96	80	120			
Zinc			25.1	mg/kg	1.0	100	80	120			
Lab ID:	H24020176-001ADIL	7 Ser	ial Dilution				Run: ICPM	S206-H_240224A		02/24	/24 18:13
Arsenic			ND	mg/kg	62		0	0		10	
Cadmium	า		3.90	mg/kg	3.0		0	0		10	Ν
Copper			4420	mg/kg	53		0	0	3.6	10	
Lead			131	mg/kg	41		0	0		10	Ν
Mangane	ese		546	mg/kg	51		0	0	3.0	10	
Molybder	num		3890	mg/kg	23		0	0	9.5	10	
Zinc			784	mg/kg	190		0	0		10	Ν
Lab ID:	H24020176-001AMS	7 San	nple Matrix	Spike			Run: ICPM	S206-H_240224A	L	02/24	/24 18:16
Arsenic			417	mg/kg	12	94	75	125			
Cadmium	า		443	mg/kg	1.0	106	75	125			
Copper			4530	mg/kg	11		75	125			Α
Lead			523	mg/kg	8.2	90	75	125			
Mangane	ese		894	mg/kg	10	81	75	125			
Molybder	านm		4610	mg/kg	4.5		75	125			А
Zinc			1150	mg/kg	39	94	75	125			
Lab ID:	H24020176-001AMSD) 7 San	nple Matrix	Spike Dupli	cate		Run: ICPM	S206-H_240224A		02/24/	/24 18:20
Arsenic			423	mg/kg	12	96	75	125	1.4	20	

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

A - Analyte level was greater than four times the spike level - in accordance with the method, percent recovery is not calculated N - Analyte concentration was not sufficiently high to calculate a Relative Percent Difference (RPD) for the serial dilution test

Prepared by Helena, MT Branch

Client:	Bison Engineering			V	Vork Order:	H2402	20176	Report	Date:	02/28/24	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020									Bate	ch: 70376
Lab ID:	H24020176-001AMSD	7 Sam	ple Matrix	Spike Duplica	ate		Run: ICPMS	6206-H_240224A		02/24/	24 18:20
Cadmium	ı		454	mg/kg	1.0	109	75	125	2.4	20	
Copper			4660	mg/kg	11		75	125	3.0	20	А
Lead			532	mg/kg	8.2	93	75	125	1.7	20	
Mangane	se		886	mg/kg	10	79	75	125	0.8	20	
Molybder	num		4500	mg/kg	4.5		75	125	2.5	20	А
Zinc			1160	mg/kg	39	98	75	125	1.4	20	

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

A - Analyte level was greater than four times the spike level - in accordance with the method, percent recovery is not calculated

Work Order Receipt Checklist

Bison Engineering

H24020176

Login completed by:	Wanda Johnson		Date F	Received: 2/7/2024
Reviewed by:	rsponholz		Rec	eived by: RRS
Reviewed Date:	2/8/2024		Carri	ier name: Hand Deliver
Shipping container/cooler in	good condition?	Yes 🖌	No 🗌	Not Present
Custody seals intact on all sl	nipping container(s)/cooler(s)?	Yes	No 🗌	Not Present 🗹
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present 🗹
Chain of custody present?		Yes 🗹	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes 🗹	No 🗌	
Chain of custody agrees with	n sample labels?	Yes	No 🗹	
Samples in proper container/	/bottle?	Yes 🖌	No 🗌	
Sample containers intact?		Yes 🖌	No 🗌	
Sufficient sample volume for	Yes 🗹	No 🗌		
All samples received within h (Exclude analyses that are consuch as pH, DO, Res CI, Su	nolding time? onsidered field parameters Ifite, Ferrous Iron, etc.)	Yes 🖌	No 🗌	
Temp Blank received in all sl	hipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
Container/Temp Blank tempe	erature:	4.7°C No Ice		
Containers requiring zero heabubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted 🗹
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable 🗹

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

No date or time on sample containers, used information from the COC. wjj 2/7/2024

ENERGY (

Chain of Custody & Analytical Request Record

www.energylab.com

of 1 Page 1

Account Inforr	nation (Billing	g information)		R	eport Ir	formatic	on (if diffe	rent than A	ccount Inform	ation)	Commen	ts			
Company/Name Bis	on Engineeri	ng Inc.		ŭ	mpany/Na	me					These are	e dustfal	I sample	S.	
Contact Ste	ive Heck			č	Intact						Collected	from 01	-02-202	4 to 02-01-2024.	
Phone 40(5-498-4199			H	one										
Mailing Address 314	43 E Lyndale	Ave		M	ailing Addre	SSS									
City, State, Zip He	lena, MT 596	101		ō	y, State, Zi	d									
Email she	sck@bison-ei	ng.com		Ш	nail										
Receive Invoice DH.	ard Copy EEma	iil Receive Repo	rt □Hard Copy	Email Re	iceive Rep	ort DHard C	Copy DEn	liai							
Purchase Order	Quote H16951		Bottle Order	S 🗆	ecial Report	Formats:		T (contact la	boratory) 🗆 Ot	her					
Project Inform	ation				Matri	x Codes			Analy	sis Requeste	p				Г
Project Name, PWSIE), Permit, etc. Mt	ontana Resou	rces Dustfall		- Y -	Air	5	+					Stan	turnaround times are idard unless marked a	SE
Sampler Name Steve	Heck	Sampler Ph	one 406-498-4	1199	3 0	Water Soils/	sen	oM ,r						RUSH.	
Sample Origin State	Montana	EPA/State	Compliance	Yes 🔳 No	<i>b ></i>	Solids Vegetation	l letc	, Mr				F	MUS	Energy Laboratories	to
URANIUM MINING C Unprocessed Ore Processed Ore (Gr 11(e)2 Byproduct IV	LIENTS MUST in pund or Refined) laterial (Can ONI	ndicate sample t **CALL BEFORE LY be Submitted to	ype SENDING DELI Casper Loco	ation)	в. ОМ	Bioassay Oil Drinking Water	metric - to	q' Cn' br				Attachee	RUS cha S	SH sample submittal for irges and scheduling - ee Instructions Page	ı c
Sam	ple Identifica e. Location, Interval	ation (, etc.)	Date	llection	Number of Containers	(See Codes	Gravi	O , eA nS				992	RUSH	ELI LAB ID Laboratory Use Only	
1 DF-GREELEN	-006		02/01/202	4 1:00 pm	-	A	>	>					H	-locote	76
2 DF-PINE-006			02/01/202	4 12:45 pr	1	A	>	>							
3 DF-WALNUT-	006		02/01/202	4 1:15 pm	-	A	>	>							
4 DF-FB-006			02/01/202	4 1:20 pm	-	A	>	>							
5															
9															
7															
8												_			
0													-		
ELI is R	EQUIRED to	provide preser	vative traceabi	lity. If the pr	eservative	es supplied	with the	pottle orde	Sr were NOT	used, please at	ttach your pres	ervative in	Iformation	with this COC.	
Custody Relin Record	quished by (print)	Heck	Date/Time	NOOS SIG	Ser P	frela		Receive	d by (print)		Date/Time		Signature		
MUST Retin	quished by (print)		Date/Time	Sig	nature			Receive	8 PONHC	y (print)	Date/Time	1400	Signature	Pr Indiator	
						LABOR	ATORY US	E ONLY					1	0 1	
Shipped By	Cooler ID(s)	Custedy Seal	B Y N	Receipt Te	°C Ter	Y N N	A lo	cc	Payme Cash C	Int Type	Amount	Rec	ceipt Numbe	er (cash/check only)	

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ANALYTICAL SUMMARY REPORT

March 18, 2024

Bison Engineerir	ng				
3143 E Lyndale	Ave				
Helena, MT 596	01-6401				
Work Order:	H24020699	Quote ID: H16951			
Project Name:	Montana Resources D	ustfall			
Energy Laborato	ries Inc Helena MT rece	eived the following 4 sa	amples for Bis	on Engineering	on 2/29/2024 for analysis.
Lab ID	Client Sample ID	Collect Date R	eceive Date	Matrix	Test
H24020699-001	DF-GREELEY-007	02/29/24 12:17	02/29/24	Solid	Metals by ICP/ICPMS, Total Client Provided Field Parameters Total Metals Digestion by SW3050B Soil Preparation USDA1
H24020699-002	DF-PINE-007	02/29/24 12:45	02/29/24	Solid	Metals by ICP/ICPMS, Total Client Provided Field Parameters Total Metals Digestion by SW3050B
H24020699-003	DF-WALNUT-007	02/29/24 13:15	02/29/24	Solid	Same As Above
H24020699-004	DF-FB-007	02/29/24 13:18	02/29/24	Solid	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Prepared by Helena, MT Branch

Client:	Bison Engineering
Project:	Montana Resources Dustfall
Lab ID:	H24020699-001
Client Sample ID:	DF-GREELEY-007

 Report Date:
 03/18/24

 Collection Date:
 02/29/24 12:17

 DateReceived:
 02/29/24

 Matrix:
 Solid

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS, TOTAL - EPA SW846							
Arsenic	10	mg/kg		2		SW6020	03/12/24 18:15 / dck
Cadmium	2	mg/kg		1		SW6020	03/12/24 18:15 / dck
Copper	2120	mg/kg		6		SW6020	03/13/24 16:55 / dck
Lead	78	mg/kg		2		SW6020	03/12/24 18:15 / dck
Manganese	344	mg/kg		6		SW6020	03/13/24 16:55 / dck
Molybdenum	1390	mg/kg		1		SW6020	03/12/24 18:15 / dck
Zinc	382	mg/kg		20		SW6020	03/13/24 16:55 / dck
CLIENT PROVIDED FIELD PARAMETERS							
Wet Wt, g	719	g	*	0.00010	0.0001	FIELD	03/18/24 00:00 / kjb
Dry Wt, g	0.0411	g	*	0.00010	0.0001	FIELD	03/18/24 00:00 / kjb

Report Definitions: RL - Analyte Reporting Limit QCL - Quality Control Limit

* - The result exceeds the Maximum Contaminant Level (MCL)

Prepared by Helena, MT Branch

Client:	Bison Engineering
Project:	Montana Resources Dustfall
Lab ID:	H24020699-002
Client Sample ID:	DF-PINE-007

 Report Date:
 03/18/24

 Collection Date:
 02/29/24 12:45

 DateReceived:
 02/29/24

 Matrix:
 Solid

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS, TOTAL - EPA SW846							
Arsenic	25	mg/kg		9		SW6020	03/13/24 16:59 / dck
Cadmium	3	mg/kg		1		SW6020	03/12/24 18:22 / dck
Copper	4150	mg/kg		7		SW6020	03/13/24 16:59 / dck
Lead	108	mg/kg		2		SW6020	03/12/24 18:22 / dck
Manganese	515	mg/kg		7		SW6020	03/13/24 16:59 / dck
Molybdenum	2740	mg/kg		3		SW6020	03/13/24 16:59 / dck
Zinc	675	mg/kg		30		SW6020	03/13/24 16:59 / dck
CLIENT PROVIDED FIELD PARAMETERS							
Wet Wt, g	680	g	*	0.00010	0.0001	FIELD	03/18/24 00:00 / kjb
Dry Wt, g	0.0349	g	*	0.00010	0.0001	FIELD	03/18/24 00:00 / kjb

Prepared by Helena, MT Branch

Client:	Bison Engineering
Project:	Montana Resources Dustfall
Lab ID:	H24020699-003
Client Sample ID:	DF-WALNUT-007

 Report Date:
 03/18/24

 Collection Date:
 02/29/24 13:15

 DateReceived:
 02/29/24

 Matrix:
 Solid

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS, TOTAL - EPA SW846							
Arsenic	15	mg/kg		5		SW6020	03/13/24 17:03 / dck
Cadmium	2	mg/kg		1		SW6020	03/12/24 18:25 / dck
Copper	2440	mg/kg		4		SW6020	03/13/24 17:03 / dck
Lead	87	mg/kg		1		SW6020	03/12/24 18:25 / dck
Manganese	400	mg/kg		4		SW6020	03/13/24 17:03 / dck
Molybdenum	722	mg/kg		1		SW6020	03/12/24 18:25 / dck
Zinc	432	mg/kg		10		SW6020	03/13/24 17:03 / dck
CLIENT PROVIDED FIELD PARAMETERS							
Wet Wt, g	721	g	*	0.00010	0.0001	FIELD	03/18/24 00:00 / kjb
Dry Wt, g	0.0629	g	*	0.00010	0.0001	FIELD	03/18/24 00:00 / kjb

Report Definitions: RL - Analyte Reporting Limit QCL - Quality Control Limit

* - The result exceeds the Maximum Contaminant Level (MCL)

03/18/24 02/29/24 13:18 02/29/24 Solid

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client:	Bison Engineering	Report Date:
Project:	Montana Resources Dustfall	Collection Date:
Lab ID:	H24020699-004	DateReceived:
Client Sample ID:	DF-FB-007	Matrix:

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
METALS, TOTAL - EPA SW846							
Arsenic	ND	mg/kg		1		SW6020	03/12/24 18:29 / dck
Cadmium	ND	mg/kg		1		SW6020	03/12/24 18:29 / dck
Copper	0.3	mg/kg	J	1		SW6020	03/12/24 18:29 / dck
Lead	ND	mg/kg		1		SW6020	03/12/24 18:29 / dck
Manganese	ND	mg/kg		1		SW6020	03/12/24 18:29 / dck
Molybdenum	ND	mg/kg		1		SW6020	03/12/24 18:29 / dck
Zinc	ND	mg/kg		1		SW6020	03/12/24 18:29 / dck
CLIENT PROVIDED FIELD PARAMETERS							
Wet Wt, g	205	g	*	0.00010	0.0001	FIELD	03/18/24 00:00 / kjb
Dry Wt, g	ND	g		0.00010	0.0001	FIELD	03/18/24 00:00 / kjb

Report Definitions: RL - Analyte Reporting Limit QCL - Quality Control Limit

* - The result exceeds the Maximum Contaminant Level (MCL)

MCL - Maximum Contaminant Level

ND - Not detected at the Reporting Limit (RL)

 ${\sf J}$ - Estimated value - analyte was present but less than the Reporting Limit (RL)

Prepared by Helena, MT Branch

Client:	Bison Engineering				Work Order:	H2402	20699	Repo	ort Date:	03/18/24	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020							Analytic	al Run: I	CPMS206-H	_240312A
Lab ID:	ICV	7 Ir	itial Calibratio	on Verifica	ation Standard					03/12	/24 12:55
Arsenic			0.0611	mg/L	0.0010	102	90	110			
Cadmium	ı		0.0315	mg/L	0.0010	105	90	110			
Copper			0.0626	mg/L	0.0010	104	90	110			
Lead			0.0590	mg/L	0.0010	98	90	110			
Mangane	se		0.311	mg/L	0.0010	104	90	110			
Molybder	านm		0.0592	mg/L	0.0010	99	90	110			
Zinc			0.0635	mg/L	0.0010	106	90	110			
Lab ID:	ICSA	7 Ir	iterference C	heck Sam	ple A					03/12	/24 13:05
Arsenic			-0.0000381	mg/L	0.0010						
Cadmium	ı		0.000222	mg/L	0.0010						
Copper			0.000162	mg/L	0.0010						
Lead			0.0000253	mg/L	0.0010						
Mangane	se		0.000268	mg/L	0.0010		0	0			
Molybder	num		0.847	mg/L	0.0010	106	70	130			
Zinc			0.000283	mg/L	0.0010						
Lab ID:	ICSAB	7 Ir	terference C	heck Sam	ple AB					03/12	/24 13:12
Arsenic			0.00980	mg/L	0.0010	98	70	130			
Cadmium	ו		0.0103	mg/L	0.0010	103	70	130			
Copper			0.0194	mg/L	0.0010	97	70	130			
Lead			0.0000212	mg/L	0.0010		0	0			
Mangane	ese		0.0198	mg/L	0.0010	99	70	130			
Molybder	านm		0.777	mg/L	0.0010	97	70	130			
Zinc			0.0114	mg/L	0.0010	114	70	130			
Lab ID:	CCV	7 C	ontinuing Cal	libration V	erification Standa	rd				03/12	/24 18:04
Arsenic			0.0510	mg/L	0.0010	102	90	110			
Cadmium	ı		0.0496	mg/L	0.0010	99	90	110			
Copper			0.0503	mg/L	0.0010	101	90	110			
Lead			0.0499	mg/L	0.0010	100	90	110			
Mangane	ese		0.0511	mg/L	0.0010	102	90	110			
Molybder	านm		0.0483	mg/L	0.0010	97	90	110			
Zinc			0.0512	mg/L	0.0010	102	90	110			
Method:	SW6020									Bat	ich: 70744
Lab ID:	MB-70744	7 M	lethod Blank				Run: ICPM	S206-H_240312	2A	03/12	/24 18:11
Arsenic			ND	mg/kg	0.1						
Cadmium	ı		ND	mg/kg	0.006						
Copper			0.1	mg/kg	0.1						
Lead			ND	mg/kg	0.08						
Mangane	ese		ND	mg/kg	0.1						
Molybder	านm		ND	mg/kg	0.04						
Zinc			ND	mg/kg	0.4						

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Prepared by Helena, MT Branch

Client:	Bison Engineering				Work Order:	H2402	20699	Report	Date:	03/18/24	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020									Bate	ch: 70744
Lab ID:	H24020699-001ADIL	3 Ser	ial Dilution				Run: ICPM	S206-H_240312A		03/12/	/24 18:18
Cadmium			1.88	mg/kg	1.0		0	0		10	Ν
Lead			81.2	mg/kg	9.7		0	0		10	Ν
Molybden	um		1410	mg/kg	5.3		0	0	0.9	10	
Lab ID:	LCS-70744	7 Lab	oratory Cor	ntrol Sampl	е		Run: ICPM	S206-H_240312A		03/12/	/24 18:36
Arsenic			137	mg/kg	1.0	70	66.4	104			
Cadmium			92.6	mg/kg	1.0	94	79.2	121			
Copper			105	mg/kg	1.0	77	73.9	113			
Lead			93.0	mg/kg	1.0	89	71.6	128			
Mangane	se		347	mg/kg	1.0	80	74.4	123			
Molybden	um		107	mg/kg	1.0	85	61.3	124			
Zinc			206	mg/kg	1.0	89	83.1	125			
Lab ID:	LFB-70744	7 Lab	oratory For	tified Blank			Run: ICPM	S206-H_240312A		03/12/	/24 18:39
Arsenic			20.9	mg/kg	1.0	84	80	120			
Cadmium			13.0	mg/kg	1.0	104	80	120			
Copper			20.9	mg/kg	1.0	84	80	120			
Lead			25.5	mg/kg	1.0	102	80	120			
Mangane	se		103	mg/kg	1.0	82	80	120			
Molybden	um		24.8	mg/kg	1.0	99	80	120			
Zinc			20.9	mg/kg	1.0	84	80	120			
Lab ID:	LFBD-70744	7 Lab	oratory For	tified Blank	Duplicate		Run: ICPM	S206-H_240312A		03/12/	/24 18:42
Arsenic			20.8	mg/kg	1.0	83	80	120	0.7	20	
Cadmium			12.8	mg/kg	1.0	102	80	120	1.7	20	
Copper			20.8	mg/kg	1.0	83	80	120	0.5	20	
Lead			25.0	mg/kg	1.0	100	80	120	2.0	20	
Mangane	se		100	mg/kg	1.0	80	80	120	2.0	20	
Molybden	um		24.5	mg/kg	1.0	98	80	120	1.2	20	
Zinc			20.9	mg/kg	1.0	84	80	120	0.1	20	
Lab ID:	H24020699-001AMS	7 Sar	nple Matrix	Spike			Run: ICPM	S206-H_240312A		03/12/	24 18:45
Arsenic			91.8	mg/kg	2.9	84	75	125			
Cadmium			95.3	mg/kg	1.0	96	75	125			
Copper			1950	mg/kg	2.5		75	125			А
Lead			172	mg/kg	1.9	96	75	125			
Mangane	se		393	mg/kg	2.4	100	75	125			
Molybden	um		1450	mg/kg	1.1		75	125			А
Zinc			418	mg/kg	9.2	95	75	125			
Lab ID:	H24020699-001AMS) 7 Sar	nple Matrix	Spike Dupl	icate		Run: ICPM	S206-H_240312A		03/12/	24 18:49
Arsenic			92.7	mg/kg	2.9	85	75	125	0.9	20	
Cadmium			97.9	mg/kg	1.0	99	75	125	2.7	20	
Copper			1980	mg/kg	2.5		75	125	1.5	20	А
Lead			175	mg/kg	1.9	99	75	125	1.6	20	
Mangane	se		394	mg/kg	2.4	101	75	125	0.2	20	

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

A - Analyte level was greater than four times the spike level - in accordance with the method, percent recovery is not calculated N - Analyte concentration was not sufficiently high to calculate a Relative Percent Difference (RPD) for the serial dilution test

Prepared by Helena, MT Branch

Client:	Bison Engineering			V	Vork Order:	H2402	20699	Repor	t Date:	03/18/24	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020									Bate	ch: 70744
Lab ID:	H24020699-001AMSD	7 Sa	ample Matrix	Spike Duplica	ite		Run: ICPM	S206-H_240312A	A	03/12/	24 18:49
Molybder	num		1560	mg/kg	1.1		75	125	7.3	20	А
Zinc			425	mg/kg	9.2	102	75	125	1.8	20	

Prepared by Helena, MT Branch

Client:	Bison Engineering				Work Order:	H2402	20699	Repo	ort Date:	03/18/24	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020							Analytic	al Run: IC	PMS206-H	_240313A
Lab ID:	ICV	5	nitial Calibratio	on Verifica	tion Standard					03/13	/24 13:45
Arsenic			0.0613	mg/L	0.0010	102	90	110			
Copper			0.0630	mg/L	0.0010	105	90	110			
Mangane	se		0.308	mg/L	0.0010	103	90	110			
Molybder	num		0.0575	mg/L	0.0010	96	90	110			
Zinc			0.0630	mg/L	0.0010	105	90	110			
Lab ID:	ICSA	5	nterference Cl	heck Sam	ple A					03/13	/24 13:57
Arsenic			-0.0000439	mg/L	0.0010						
Copper			0.000135	mg/L	0.0010						
Mangane	se		0.000284	mg/L	0.0010		0	0			
Molybder	num		0.872	mg/L	0.0010	109	70	130			
Zinc			0.000352	mg/L	0.0010						
Lab ID:	ICSAB	5	nterference Cl	heck Sam	ple AB					03/13	/24 14:04
Arsenic			0.0103	mg/L	0.0010	103	70	130			
Copper			0.0200	mg/L	0.0010	100	70	130			
Mangane	se		0.0207	mg/L	0.0010	103	70	130			
Molybder	านm		0.831	mg/L	0.0010	104	70	130			
Zinc			0.0118	mg/L	0.0010	118	70	130			
Lab ID:	CCV	5 (Continuing Cal	ibration V	erification Standa	rd				03/13	/24 16:44
Arsenic			0.0511	mg/L	0.0010	102	90	110			
Copper			0.0501	mg/L	0.0010	100	90	110			
Mangane	se		0.0504	mg/L	0.0010	101	90	110			
Molybder	num		0.0486	mg/L	0.0010	97	90	110			
Zinc			0.0513	mg/L	0.0010	103	90	110			
Method:	SW6020									Bat	ch: 70744
Lab ID:	MB-70744	7 1	√lethod Blank				Run: ICPM	S206-H_24031	3A	03/13	/24 16:51
Arsenic			ND	mg/kg	0.3						
Cadmium	1		ND	mg/kg	0.01						
Copper			ND	mg/kg	0.3						
Lead			ND	mg/kg	0.2						
Mangane	se		ND	mg/kg	0.2						
Molybder	านm		ND	mg/kg	0.1						
Zinc			ND	mg/kg	0.9						
Lab ID:	H24020699-003ADIL	7 5	Serial Dilution				Run: ICPM	S206-H_24031	3A	03/13	/24 17:06
Arsenic			ND	mg/kg	24		0	0		10	
Cadmium	1		1.87	mg/kg	1.2		0	0		10	Ν
Copper			2560	mg/kg	20		0	0	4.7	10	
Lead			94.4	mg/kg	16		0	0		10	Ν
Mangane	se		416	mg/kg	20		0	0	3.9	10	
Molybder	านm		785	mg/kg	8.7		0	0	2.0	10	
Zinc			473	mg/kg	75		0	0		10	Ν

Qualifiers:

RL - Analyte Reporting Limit

N - Analyte concentration was not sufficiently high to calculate a Relative Percent Difference (RPD) for the serial dilution test

ND - Not detected at the Reporting Limit (RL)

Work Order Receipt Checklist

Bison Engineering

H24020699

Login completed by:	Wanda Johnson		Date F	Received: 2/29/2024
Reviewed by:	tjones		Rec	eived by: RAT
Reviewed Date:	2/29/2024		Carri	er name: Hand Deliver
Shipping container/cooler in	good condition?	Yes	No 🗌	Not Present 🗸
Custody seals intact on all sl	nipping container(s)/cooler(s)?	Yes	No 🗌	Not Present 🗸
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present 🗹
Chain of custody present?		Yes 🗹	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes 🗹	No 🗌	
Chain of custody agrees with	sample labels?	Yes	No 🗹	
Samples in proper container/	/bottle?	Yes 🗹	No 🗌	
Sample containers intact?		Yes 🗹	No 🗌	
Sufficient sample volume for	indicated test?	Yes 🗹	No 🗌	
All samples received within h (Exclude analyses that are co such as pH, DO, Res CI, Su	olding time? onsidered field parameters lfite, Ferrous Iron, etc.)	Yes 🗹	No 🗌	
Temp Blank received in all sl	nipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
Container/Temp Blank tempe	erature:	18.8°C No Ice		
Containers requiring zero heabubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

No collection date or time on bottles. Used date and time from COC. wjj 2/29/2024

lest Record Page 1 of 1	on) Comments	These are dustfall samples.	Collected from 02-01-2024 to 02-29-2024.							is Requested	All turnaround times are	standard unless marked as RUSH.	Energy Laboratories	RUSH sample submittal for charges and scheduling – See Instructions Page	See ELI LAB ID	anett	DD D D D D D D D D D D D D D D D D D D					sed, please attach your preservative information with this COC.	to Detertime 13:30 Segature A. B. 22 orner Detertime 2-29-241550 Signature A. B. 20	Type Amount Receipt Number (cash/check only)
ustody & Analytical Requ	Report Information (if different than Account Informati	Company/Name	Contact	Phone	Mailing Address	City, State, Zip	Email	Receive Report DHard Copy DEmail	Special ReportFormats: Cented IV DELAC DEDD/EDT (contect (aboratory) Othe	Matrix Codes Analysi	A- Air	vv. vvater solis/ m, Mo	v vegetation	B - Bioassay 0 - Oil W - Ominin Metric - to Metric - to	Number of Matrix Containers (See codes Containers (See codes	7 1 A V V		51 1 A V V	0 1 A V V			preservatives suppligd with the bottle order were NOT u	Signative Hell Board by prime B.	Temp Temp Blank On tee Pavment
RECY Chain of Cu	nt Information (Billing information)	Name Bison Engineering Inc.	Steve Heck	406-498-4199	Idress 3143 E Lyndale Ave	t, Zip Helena, MT 59601	sheck@bison-eng.com	voice □Hard Copy ■Email Receive Report □Hard Copy ■Email	Order Quote Bottle Order 8 H16951	t Information	ime, PWSID, Permit, etc. Montana Resources Dustfall	ame Steve Heck Sampler Phone 406-498-4199	rigin State Montana EPA/State Compliance 🛛 Yes 🔳 No	I MINING CLIENTS MUST indicate sample type assed Ore sed Ore (Ground or Refined) **CALL BEFORE SENDING product Material (Can ONLY be Submitted to ELI Casper Location)	Sample Identification Collection	SREELEY-007 02/29/2024 1.3.17	1NE-007 02/29/2024 124	VALNUT-007 02/29/2024 1315	B-007 02/29/2024 1 3 1,			ELI is REQUIRED to provide preservative traceability. If the p	T Relinquished by (prind) HCck DaterTime 1330 SI T Belinquished by (print) B:12 DaterTime 24 15:50 SI ed DaterTime 24 15:50 SI	d By / Cooler ID(s) Custody Seals Intact Receipt.

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-01/21 v.4

ANALYTICAL SUMMARY REPORT

April 19, 2024

Bison Engineering 3143 E Lyndale Ave Helena, MT 59601-6401

 Work Order:
 H24040198
 Quote ID:
 H16951

Project Name: Montana Resources Dustfall

Energy Laboratories Inc Helena MT received the following 4 samples for Bison Engineering on 4/4/2024 for analysis.

Lab ID	Client Sample ID	Collect Date R	eceive Date	Matrix	Test
H24040198-001	DF-GREELEY-008	04/01/24 9:45	04/04/24	Solid	Metals by ICP/ICPMS, Total Total Metals Digestion by SW3050B Soil Parameters
H24040198-002	DF-PINE-008	04/01/24 9:56	04/04/24	Solid	Same As Above
H24040198-003	DF-WALNUT-008	04/01/24 10:17	04/04/24	Solid	Same As Above
H24040198-004	DF-FB-008	04/01/24 10:20	04/04/24	Solid	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Prepared by Helena, MT Branch

Client:	Bison Engineering	Report Date:	04/19/24
Project:	Montana Resources Dustfall	Collection Date:	04/01/24 09:45
Lab ID:	H24040198-001	DateReceived:	04/04/24
Client Sample ID	: DF-GREELEY-008	Matrix:	Solid

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Dry Wt, g	0.086	g				USDA1	04/16/24 09:00 / kjb
Wet Wt, g	491	g				USDA1	04/16/24 09:00 / kjb
METALS, TOTAL - EPA SW846							
Arsenic	12	mg/kg		4		SW6020	04/18/24 16:18 / dck
Cadmium	1	mg/kg		1		SW6020	04/18/24 16:18 / dck
Copper	1620	mg/kg		3		SW6020	04/18/24 16:18 / dck
Lead	62	mg/kg		2		SW6020	04/18/24 16:18 / dck
Manganese	325	mg/kg		3		SW6020	04/18/24 16:18 / dck
Molybdenum	1070	mg/kg		1		SW6020	04/18/24 16:18 / dck
Zinc	367	mg/kg		10		SW6020	04/18/24 16:18 / dck

Prepared by Helena, MT Branch

Client:	Bison Engineering	Report Date:	04/19/24
Project:	Montana Resources Dustfall	Collection Date:	04/01/24 09:56
Lab ID:	H24040198-002	DateReceived:	04/04/24
Client Sample ID:	DF-PINE-008	Matrix:	Solid

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Dry Wt, g	0.080	g				USDA1	04/16/24 09:00 / kjb
Wet Wt, g	616	g				USDA1	04/16/24 09:00 / kjb
METALS, TOTAL - EPA SW846							
Arsenic	25	mg/kg		4		SW6020	04/18/24 16:25 / dck
Cadmium	3	mg/kg		1		SW6020	04/18/24 16:25 / dck
Copper	3050	mg/kg		3		SW6020	04/18/24 16:25 / dck
Lead	100	mg/kg		2		SW6020	04/18/24 16:25 / dck
Manganese	507	mg/kg		3		SW6020	04/18/24 16:25 / dck
Molybdenum	2100	mg/kg		1		SW6020	04/18/24 16:25 / dck
Zinc	610	mg/kg		10		SW6020	04/18/24 16:25 / dck

Report Definitions: RL - Analyte Reporting Limit QCL - Quality Control Limit

Prepared by Helena, MT Branch

Client: Bison Engineering Montana Resources Dustfall **Project:** Lab ID: H24040198-003 Client Sample ID: DF-WALNUT-008

Report Date: 04/19/24 Collection Date: 04/01/24 10:17 DateReceived: 04/04/24 Matrix: Solid

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Dry Wt, g	0.10	q				USDA1	04/16/24 09:00 / kjb
Wet Wt, g	603	g				USDA1	04/16/24 09:00 / kjb
METALS, TOTAL - EPA SW846							
Arsenic	15	mg/kg		3		SW6020	04/18/24 16:28 / dck
Cadmium	2	mg/kg		1		SW6020	04/18/24 16:28 / dck
Copper	1890	mg/kg		2		SW6020	04/18/24 16:28 / dck
Lead	74	mg/kg		2		SW6020	04/18/24 16:28 / dck
Manganese	440	mg/kg		2		SW6020	04/18/24 16:28 / dck
Molybdenum	714	mg/kg		1		SW6020	04/18/24 16:28 / dck
Zinc	447	mg/kg		9		SW6020	04/18/24 16:28 / dck

Prepared by Helena, MT Branch

Client:	Bison Engineering	Report Date:	04/19/24
Project:	Montana Resources Dustfall	Collection Date:	04/01/24 10:20
Lab ID:	H24040198-004	DateReceived:	04/04/24
Client Sample ID:	DF-FB-008	Matrix:	Solid

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Dry Wt, g	0.00030	g				USDA1	04/16/24 09:00 / kjb
Wet Wt, g	157	g				USDA1	04/16/24 09:00 / kjb
METALS, TOTAL - EPA SW846							
Arsenic	ND	mg/kg		1		SW6020	04/18/24 16:31 / dck
Cadmium	ND	mg/kg		1		SW6020	04/18/24 16:31 / dck
Copper	0.5	mg/kg	J	1		SW6020	04/18/24 16:31 / dck
Lead	0.4	mg/kg	J	1		SW6020	04/18/24 16:31 / dck
Manganese	0.4	mg/kg	J	1		SW6020	04/18/24 16:31 / dck
Molybdenum	ND	mg/kg		1		SW6020	04/18/24 16:31 / dck
Zinc	2	ma/ka		1		SW6020	04/18/24 16:31 / dck

Report Definitions: RL - Analyte Reporting Limit QCL - Quality Control Limit J - Estimated value - analyte was present but less than the Reporting Limit (RL) MCL - Maximum Contaminant Level ND - Not detected at the Reporting Limit (RL)

Trust our People. Trust our Data. www.energylab.com

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

QA/QC Summary Report

Prepared by Helena, MT Branch

Client:	Bison Engineering	wering Work Order: H24040198	40198	Report Date: 04/19/24							
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020							Analytic	al Run: I	CPMS206-H	240418A
Lab ID:	ICV	7 Ir	nitial Calibratio	on Verifica	ation Standard					04/18	/24 14:18
Arsenic			0.0597	mg/L	0.0010	100	90	110			
Cadmium	ı		0.0299	mg/L	0.0010	100	90	110			
Copper			0.0609	mg/L	0.0010	101	90	110			
Lead			0.0574	mg/L	0.0010	96	90	110			
Mangane	se		0.309	mg/L	0.0010	103	90	110			
Molybder	num		0.0574	mg/L	0.0010	96	90	110			
Zinc			0.0617	mg/L	0.0010	103	90	110			
Lab ID:	ICSA	7 Ir	nterference Cl	neck Sam	ple A					04/18	/24 14:28
Arsenic			-0.0000232	mg/L	0.0010						
Cadmium	ı		0.000149	mg/L	0.0010						
Copper			0.0000262	mg/L	0.0010						
Lead			0.000423	mg/L	0.0010						
Mangane	se		0.000262	mg/L	0.0010		0	0			
Molybder	num		0.801	mg/L	0.0010	100	70	130			
Zinc			0.000220	mg/L	0.0010						
Lab ID:	ICSAB	7 Ir	nterference Cl	neck Sam	ple AB					04/18	/24 14:34
Arsenic			0.00965	mg/L	0.0010	96	70	130			
Cadmium	ı		0.00969	mg/L	0.0010	97	70	130			
Copper			0.0186	mg/L	0.0010	93	70	130			
Lead			0.0000582	mg/L	0.0010		0	0			
Mangane	se		0.0193	mg/L	0.0010	97	70	130			
Molybder	num		0.800	mg/L	0.0010	100	70	130			
Zinc			0.0108	mg/L	0.0010	108	70	130			
Lab ID:	CCV	7 C	Continuing Cal	ibration V	erification Standa	rd				04/18/	/24 16:08
Arsenic			0.0492	mg/L	0.0010	98	90	110			
Cadmium	ı		0.0525	mg/L	0.0010	105	90	110			
Copper			0.0507	mg/L	0.0010	101	90	110			
Lead			0.0482	mg/L	0.0010	96	90	110			
Mangane	se		0.0505	mg/L	0.0010	101	90	110			
Molybder	num		0.0528	mg/L	0.0010	106	90	110			
Zinc			0.0504	mg/L	0.0010	101	90	110			
Method:	SW6020									Bat	ch: 71358
Lab ID:	MB-71358	7 N	lethod Blank				Run: ICPM	S206-H_240418	BA	04/18/	/24 16:15
Arsenic			ND	mg/kg	0.3						
Cadmium	1		ND	mg/kg	0.01						
Copper			ND	mg/kg	0.3						
Lead			ND	mg/kg	0.2						
Mangane	se		ND	mg/kg	0.2						
Molybder	num		ND	mg/kg	0.1						
Zinc			ND	mg/kg	0.9						

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Prepared by Helena, MT Branch

Client:	Bison Engineering				Work Order:	H2404	0198	Repor	t Date:	: 04/19/24	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020									Bat	ch: 71358
Lab ID:	H24040198-001ADIL	7	Serial Dilution				Run: ICPM	S206-H 240418	4	04/18	/24 16:21
Arsenic			ND	mg/kg	18		0	- 0		10	
Cadmium	ı		1.53	mg/kg	1.0		0	0		10	Ν
Copper			1700	mg/kg	15		0	0	4.9	10	
Lead			64.7	mg/kg	12		0	0		10	Ν
Mangane	se		344	ma/ka	14		0	0	6.0	10	
Molvbder	num		1050	ma/ka	6.4		0	0	2.0	10	
Zinc			408	mg/kg	55		0	0		10	Ν
Lab ID:	LCS-71358	7	Laboratory Cor	ntrol Sampl	e		Run: ICPM	S206-H_240418/	4	04/18	/24 16:35
Arsenic			150	mg/kg	1.0	76	66.4	104			
Cadmium	ı		99.7	mg/kg	1.0	101	79.2	121			
Copper			115	mg/kg	1.0	84	73.9	113			
Lead			100	mg/kg	1.0	95	71.6	128			
Mangane	se		393	mg/kg	1.0	91	74.4	123			
Molvbder	num		117	ma/ka	1.0	92	61.3	124			
Zinc			224	mg/kg	1.9	97	83.1	125			
Lab ID:	LFB-71358	7	Laboratory For	tified Blank			Run: ICPMS206-H 240418A				/24 16:38
Arsenic			23.1	mg/kg	1.0	92	80	120			
Cadmium	า		13.0	mg/kg	1.0	104	80	120			
Copper			23.9	mg/kg	1.0	96	80	120			
Lead			25.3	mg/kg	1.0	101	80	120			
Mangane	se		121	mg/kg	1.0	97	80	120			
Molybder	num		24.8	mg/kg	1.0	99	80	120			
Zinc			23.7	mg/kg	1.0	95	80	120			
Lab ID:	LFBD-71358	7	Laboratory For	tified Blank	Duplicate		Run: ICPM	S206-H_240418/	4	04/18	/24 16:41
Arsenic			22.8	mg/kg	1.0	91	80	120			
Cadmium	ı		12.8	mg/kg	1.0	102	80	120			
Copper			23.4	mg/kg	1.0	94	80	120			
Lead			24.7	mg/kg	1.0	99	80	120			
Mangane	se		118	mg/kg	1.0	94	80	120			
Molybder	านm		24.5	mg/kg	1.0	98	80	120			
Zinc			23.4	mg/kg	1.0	93	80	120			
Lab ID:	H24040198-001AMS	7 :	Sample Matrix	Spike			Run: ICPM	S206-H_240418/	4	04/18	/24 16:44
Arsenic			116	mg/kg	3.5	89	75	125			
Cadmium	ı		121	mg/kg	1.0	103	75	125			
Copper			1710	mg/kg	3.0		75	125			А
Lead			177	mg/kg	2.3	99	75	125			
Mangane	se		427	mg/kg	2.9	88	75	125			
Molybder	num		1220	mg/kg	1.3		75	125			А
Zinc			468	mg/kg	11	86	75	125			
Lab ID:	H24040198-001AMSE) 7 :	Sample Matrix	Spike Dupl	licate		Run: ICPM	S206-H_240418/	4	04/18/	/24 16:47
Arsenic			117	mg/kg	3.5	90	75	125	0.3	20	
Cadmium	ı		120	ma/ka	1.0	101	75	125	1.1	20	

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

A - Analyte level was greater than four times the spike level - in accordance with the method, percent recovery is not calculated N - Analyte concentration was not sufficiently high to calculate a Relative Percent Difference (RPD) for the serial dilution test

Trust our People. Trust our Data. www.energylab.com

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

QA/QC Summary Report

Prepared by Helena, MT Branch

Client [.]	Bison Engineering
ment.	

Work Order: H24040198

Client:	Bison Engineering			١	Nork Order:	H2404	0198	Repor	t Date:	04/19/24	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020									Bate	ch: 71358
Lab ID:	H24040198-001AMSD	7 San	nple Matrix	Spike Duplic	ate		Run: ICPM	S206-H_240418	A	04/18/	24 16:47
Copper			1740	mg/kg	3.0		75	125	1.6	20	А
Lead			175	mg/kg	2.3	97	75	125	0.9	20	
Mangane	se		432	mg/kg	2.9	93	75	125	1.2	20	
Molybder	num		1190	mg/kg	1.3		75	125	2.6	20	А
Zinc			474	mg/kg	11	91	75	125	1.3	20	

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

A - Analyte level was greater than four times the spike level - in accordance with the method, percent recovery is not calculated

Work Order Receipt Checklist

Bison Engineering

H24040198

Login completed by: Rebecca A. Too	ke	Date F	Received: 4/4/2024
Reviewed by: rsponholz		Rec	eived by: RAT
Reviewed Date: 4/4/2024		Carri	ier name: Hand Deliver
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present
Custody seals intact on all shipping container(s)/co	ooler(s)? Yes	No 🗌	Not Present 🗹
Custody seals intact on all sample bottles?	Yes	No 🗌	Not Present 🗹
Chain of custody present?	Yes 🗸	No 🗌	
Chain of custody signed when relinquished and rea	ceived? Yes 🗸	No 🗌	
Chain of custody agrees with sample labels?	Yes	No 🗹	
Samples in proper container/bottle?	Yes 🗸	No 🗌	
Sample containers intact?	Yes 🗸	No 🗌	
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌	
All samples received within holding time? (Exclude analyses that are considered field parame such as pH, DO, Res CI, Sulfite, Ferrous Iron, etc.	Yes 🗹 eters .)	No 🗌	
Temp Blank received in all shipping container(s)/co	coler(s)? Yes	No 🗹	Not Applicable
Container/Temp Blank temperature:	19.6°C No Ice		
Containers requiring zero headspace have no head bubble that is <6mm (1/4").	Ispace or Yes	No 🗌	No VOA vials submitted 🗹
Water - pH acceptable upon receipt?	Yes 🗌	No 🗌	Not Applicable 🗹

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

Sample collection date and time were not provided on the sample containers. Proceeded with information provided on the COC. 4/4/24 rt

	Internal Copy Timeng com Email Reserve Report Timeng Copy Erral Reserve Report Timeng Copy 61 Joade Order 51 Joade Order 51 Joade Order 51 Joade Order 51 LEVEL IV 51 LEVEL IV 51 LEVEL IV 52 LEVEL IV 53 Level I 54 Level I 55 Statistic 56 Level I 56 Level I </th <th>Dremg.com Tendl Tendl Exerual Researce Report Charact Copy Extrant Researce Report Charact Copy Extrant Researce Report Charact Copy Extrant 81 Jones Olds Researce Report Charact Copy Extrant Researce Report Charact Copy Extrant 81 Jones Olds Researce Report Charact Copy Extrant Researce Report Charact Copy Extrant 81 Researce Report Charact Copy Extrant Researce Report Charact Report Charact Researce Participation All transcont dataset are an extra transcol as a report Researce Participation 81 Researce Resont Nontaina Resources Dustrial if the Researce Participation All transcont dataset are analysis Requested 81 Researce Resont Nontaina Resources Dustrial if the Researce Resont Nontaina Resources Resont Nontaina Resources Resont 81 Researce Resont Nontaina Resources Resont Nontaina Resources Resont Nontaina Resources Resont 81 Researce Resont Nontaina Resources Resont Nontaina Resources Resont Nontaina Resources Resont 81 Researce Resont Nontaina Resources Resont Nontaina Resources Resont Nontaina Resources Resont 81 Researce Resontext Resources Resont Nontaina Reso</th> <th>Dreng.com Errall Result Resources Dustrial Errall Result Resources Dustrial 61 Image Result Resources Dustrial 61 Image Result Resources Dustrial 61 Image Resources Dustrial 61 Image Resources Dustrial 61 Image Analysis Requested 7 Resources Dustrial Analysis Requested 7 Resources Dustrial Resources Dustrial 7 Resources Dustrial Resources Dustrial Resources Dustrial 8 Resources Dustrial Resources Dustrial Resources Dustrial <</th> <th>Dreng.com Ennall Ennall Ennall Ennall 81 Jeuros Report Chiand Copy WErnal Ennall Ennall Ennall Ennall 81 Jeuros Report Chiand Copy WErnal Ennall Ennall Ennall Ennall 81 Jeuros Report Chiand Copy WErnal Ennall Ennall Ennall Ennall 81 Jeuros Report Chiand Copy WErnal Ennall Ennall Ennall Ennall 81 Series Reported Endance Analysis Requested Analysis Requested Analysis Requested 81 Series Reported Endance Version Ender Chiand Ender Chiand 81 Series Reported Endance Version Ender Chiand Ender Chiand 81 Series Reported Endance Version Ender Chiand Ender Chiand 82 Series Reported Endonce Version Ender Chiand Ender Chiand 83 Series Reported Endonce Version Ender Chiand Ender Chiand 83 Series Reported Endonce Version Ender Chiand Ender Chiand 84 Series Reported Endonce Version Ender Chiand Ender Chiand 85 Series Reported Endonce Version Ender Chiand Ender Chiand</th>	Dremg.com Tendl Tendl Exerual Researce Report Charact Copy Extrant Researce Report Charact Copy Extrant Researce Report Charact Copy Extrant 81 Jones Olds Researce Report Charact Copy Extrant Researce Report Charact Copy Extrant 81 Jones Olds Researce Report Charact Copy Extrant Researce Report Charact Copy Extrant 81 Researce Report Charact Copy Extrant Researce Report Charact Report Charact Researce Participation All transcont dataset are an extra transcol as a report Researce Participation 81 Researce Resont Nontaina Resources Dustrial if the Researce Participation All transcont dataset are analysis Requested 81 Researce Resont Nontaina Resources Dustrial if the Researce Resont Nontaina Resources Resont Nontaina Resources Resont 81 Researce Resont Nontaina Resources Resont Nontaina Resources Resont Nontaina Resources Resont 81 Researce Resont Nontaina Resources Resont Nontaina Resources Resont Nontaina Resources Resont 81 Researce Resont Nontaina Resources Resont Nontaina Resources Resont Nontaina Resources Resont 81 Researce Resontext Resources Resont Nontaina Reso	Dreng.com Errall Result Resources Dustrial Errall Result Resources Dustrial 61 Image Result Resources Dustrial 61 Image Result Resources Dustrial 61 Image Resources Dustrial 61 Image Resources Dustrial 61 Image Analysis Requested 7 Resources Dustrial Analysis Requested 7 Resources Dustrial Resources Dustrial 7 Resources Dustrial Resources Dustrial Resources Dustrial 8 Resources Dustrial Resources Dustrial Resources Dustrial <	Dreng.com Ennall Ennall Ennall Ennall 81 Jeuros Report Chiand Copy WErnal Ennall Ennall Ennall Ennall 81 Jeuros Report Chiand Copy WErnal Ennall Ennall Ennall Ennall 81 Jeuros Report Chiand Copy WErnal Ennall Ennall Ennall Ennall 81 Jeuros Report Chiand Copy WErnal Ennall Ennall Ennall Ennall 81 Series Reported Endance Analysis Requested Analysis Requested Analysis Requested 81 Series Reported Endance Version Ender Chiand Ender Chiand 81 Series Reported Endance Version Ender Chiand Ender Chiand 81 Series Reported Endance Version Ender Chiand Ender Chiand 82 Series Reported Endonce Version Ender Chiand Ender Chiand 83 Series Reported Endonce Version Ender Chiand Ender Chiand 83 Series Reported Endonce Version Ender Chiand Ender Chiand 84 Series Reported Endonce Version Ender Chiand Ender Chiand 85 Series Reported Endonce Version Ender Chiand Ender Chiand
	Sampler Phone 406-499-4199 W. Wattington the first of the semiconductor of	Image Image <th< td=""><td>Sampler Phone 406-498-4199 W. Water Solution Weater Solution Results Solution Weater Solution Results Solution Weater Solution Results Solution Results Solution</td><td>Sumpler Prone Journal of the submitted of submitted of submitted of submitted of submitted of submitted of submi</td></th<>	Sampler Phone 406-498-4199 W. Water Solution Weater Solution Results Solution Weater Solution Results Solution Weater Solution Results Solution	Sumpler Prone Journal of the submitted of submitted of submitted of submitted of submitted of submitted of submi
Montana Resources Dustfall A. Air on La Analysis increased as standard unless marked as	EPA/State Compliance Yea No Solids No	EPA/State Compliance Year No.	EPA/State Compliance Two solutions Solutions <td>EPA/State Compliance Years Solid Solid<!--</td--></td>	EPA/State Compliance Years Solid Solid </td
Montana Resources Dustfall A. Air A. Air Sampler Phone 406-498-4199 Solisi	Interval Inter	Only the Submit of the Subm	Owner and a stand of the submer of the su	Million Or officient Or off
Montana Resources Dustfall A. Air All turnaround times are standard unless marked as standard unless marked as standard unless marked as solids Nontana Resources Dustfall N. Water Sampler Phone 406-498-4199 Standard unless marked as standard unless marked as solids Nontana Resources Dustfall N. Water Sampler Phone 406-498-4199 Sandard unless marked as standard unless marked as solids Nontana Resources Dustfall N. Water Sampler Phone 406-498-4199 Sandard unless marked as standard unless marked as standard unless marked as solids EPA/State Compliance Yes NO V. Vegetation	IfficationCollectionNumber of TableMatrix Time $\overrightarrow{\nabla}$ Account $\overrightarrow{\nabla}$ Score $\overrightarrow{\nabla}$ S	titlecation	Iffication Collection Number of Target Matrix merval, etc.) Solution Date Time Target Collection Number of Target Matrix ELI LAB ID nerval, etc.) Date Time Contention B V V V 04/01/2024 9:56 am 1 A V V V V 04/01/2024 10:77 am 1 A V V V 04/01/2024 10:20 am 1 A V V<	Iffication Collection Number of Table Matrix Time Solution Solution ELILAB ID Table newel, etc.) Date Time connexeral (% acons) (% ac
Montana Resources Dustfall A- Air A- Air Montana Resources Dustfall A- Air All turnaround times are standard unless marked as sampler Phone 406-498-4199 S. Air Sampler Phone 406-498-4199 S. Solist EPA/State Compliance Y. Vagetation MUST be contracted prior to RUSH. Indicate sample type O. On the Submitted to ELI Casper Location DN- Water EPA/State Compliance Yes and solist Number EPA/State Compliance Yes and solist EPA/State Compliance Yes contacted prior to RUSH. Number EPA/State Compliance Yes and solist EPA/State Compliance Yes contacted prior to RUST be submitted to ELI Casper Location	04/01/2024 9:45 am 1 A V V M240138 04/01/2024 9:56 am 1 A V V N N240138 04/01/2024 9:56 am 1 A V V N N 04/01/2024 10:17 am 1 A V V N N N 04/01/2024 10:17 am 1 A V V N N N N 04/01/2024 10:17 am 1 A V V N	04/01/2024 9:45 am 1 A V V MCYOC/D13 8 04/01/2024 9:56 am 1 A V V A V V A	04/01/2024 9:45 am 1 A V V 04/01/2024 9:56 am 1 A V V 04/01/2024 10:17 am 1 A V V 04/01/2024 10:17 am 1 A V V 04/01/2024 10:17 am 1 A V V 04/01/2024 10:20 am 1 A V V 01/01/2024 10:20 am 1 A V V <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Montana Resources Dustfall A- Air Montana Resources Dustfall A- Air Montana Resources Dustfall A- Air Nontana Resources Duster A- Air Nonta	04/01/2024 9:56 am 1 A ✓	04/01/2024 9:56 am 1 A ✓	04/01/2024 9:56 am 1 A V V Image: Second	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Montana Resources Dustfail A- Air A- Air Montana Resources Dustfail A- Air Nontana Resources Dustfail A- Air Nontana Resources Dustfail A- Air Nontana Resources Dustfail A- Air Sampler Phone 406-498-4199 S. Solds Sender Notation Sampler Phone 406-498-4199 S. Solds Notation S. Solds Notation Verse Sampler Phone 406-498-4199 S. Solds Notation Verse Sampler Phone 406-498-4199 S. Solds Notation Verse Selection Verse Notations Page Solds Verse Notation Verse Noutrinet Verse	04/01/2024 10:17 am 1 A ✓ ✓ Image: Constraint of the state of the	04/01/2024 10:17 am 1 A ✓	04/01/2024 10:17 am 1 A V V Image: Contract of the state of the st	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Montana Resources Dustfail A. Air A. Air Montana Resources Dustfail A. Air Sampler Phone 406-498-4199 S. Solids Sampler Phone 406-498-4199 S. Solids V. Vateration Sampler Phone 406-498-4199 Sampler Phone 406-498-4199 S. Solids V. Vateration V. Vateration EPA/State Compliance Yes FAAState Compliance Yes Indicate sample type Or Oli ONLY be Submitted for Over Oli ONLY be Submitted for Co Div Out Div Out Div	04:01/2024 10:20 am 1 A ✓	04/01/2024 10:20 am 1 A ✓	04/01/2024 10:20 am 1 A ✓ ✓ ✓ 04/01/2024 10:20 am 1 A ✓ ✓ ✓ 04/01/2024 10:20 am 1 A ✓ ✓ 04/01/2024 10:20 am 1 A ✓ 04/01/2024 10:20 am 1 A ✓ 04/01/2024 10:20 am 1 A A 01/01 1 A A A	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Montana Resources Dustfall A: Air A: Air Montana Resources Dustfall A: Air A: Air Sampler Phone 406-498-4199 S: Solids W: Water Sampler Phone 406-498-4199 S: Solids W: Water EPAState Compliance □ Yes N: Vateration Sensity EPAState Compliance □ Yes N: Vateration N: Vateration Findicate sample type N: Vateration N: Vateration N: Tindicate sample type N: Vateration N: Vateration N: Vateration N: Vateration N: Vateration N: Tindicate sample type N: Vateration N: Vateration N: Vateration N: Vateration N: Vateration N: Tindicate sample type N: Vateration N: Vateration N: Vateration N: Vateration <td></td> <td>O to provide preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC.</td> <td>Image: Signature for the second by (print) Image: Signature for the second by (print) Image: Signature for the second by (print)</td> <td>Image: Signature for the preservative stapping with the bottle order were NOT used, please attach your preservative information with this COC. Image: Signature for the preservative stapping with the bottle order were NOT used, please attach your preservative information with this COC. Image: Signature for the preservative stapping with the bottle order were NOT used, please attach your preservative information with this COC. Image: Signature for the preservative stapping with the bottle order were NOT used, please attach your preservative information with this COC. Image: Signature for the preservative stapping with the bottle order were NOT used, please attach your preservative information with this COC.</td>		O to provide preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC.	Image: Signature for the second by (print) Image: Signature for the second by (print) Image: Signature for the second by (print)	Image: Signature for the preservative stapping with the bottle order were NOT used, please attach your preservative information with this COC. Image: Signature for the preservative stapping with the bottle order were NOT used, please attach your preservative information with this COC. Image: Signature for the preservative stapping with the bottle order were NOT used, please attach your preservative information with this COC. Image: Signature for the preservative stapping with the bottle order were NOT used, please attach your preservative information with this COC. Image: Signature for the preservative stapping with the bottle order were NOT used, please attach your preservative information with this COC.
Montaria Resources Dustfall A. Air Montaria Resources Dustfall A. Air Sampler Phone 406-498-4199 S. Nate Sampler Phone 406-498-4199 S. Solids N. Wate Sampler Phone 406-498-4199 Sampler Phone 406-498-4199 S. Solids EPA/State Compliance Yes with EPA/State Compliance Yes (Montaria for the solution) ed) "CALL BEFORE SENDING D. Onesasty ed) "CALL BEFORE SENDING D. Onesasty ed) "CALL BEFORE SENDING D. Onesasty point of traited to ELI Casper Location) D. Onesasty point of traited to ELI Casper Location) D. Onesasty point of traited to ELI Casper Location) D. Onesasty point of traited to ELI Casper Location) D. Onesasty point of traited to ELI Casper Location) D. Onesasty point of traited to ELI Casper Location) D. Onesasty point of traited to ELI Casper Location) D. One one (Second Casper Location) point of traited to ELI Casper Location D. Air (Collection) provide attack D. Air (Collection) point of traited to ELI Casper Location D. Air (Collection) provide attack D. Air (Collection) point of traited to ELI Casper Location D. Air (Collection) provide attack D. A		O to provide preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC.	Image: Signature interest of the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC.	It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC.
Montana Resources Dustfall A: Arr Nontana Resources Dustfall A: Arr Nontana Resources Dustfall A: Arr Nontana Resources Dustfall A: Arr No Vater Air umaround times are standard unless marked as annoter Phone 406-498-4199 A: Arr No Vater Air umaround times are standard unless marked as RUST be contacted prior to O: O: Diversion A: Arr No Vater Air umaround times are RUST be contacted prior to PUST be contacted prior to PUST be contacted prior to PUST be contacted prior to O: O: Diversion Air unaround times are RUST be contacted prior to PUST be publication A: A		O to provide preservative traceability. If the preservatives supplied with the bottle order were NOT used, please attach your preservative information with this COC.	im) DeterTime DeterTime Signature	To provide preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. Implified Implified Implifie
Montana Resources Dustfall A. Air A. Air Montana Resources Dustfall A. Air Sampler Phone 406-498-4199 5. Sold Sensity 5. Sold Vir. Water Sensity Sampler Phone 406-498-4199 5. Sold Sensity 5. Sold Vir. Water Sensity Sensity Provision Sensity Provision <t< th=""><td></td><td>O to provide preservative traceability. If the preservatives supplied with the bottle order were NOT used, please attach your preservative information with this COC.</td><td>It oppovide preservative traceability. If the preservatives supplied with the bottle order were NOT used, please attach your preservative information with this COC.</td><td>It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. It is the preservative traceability. If the preservative supplied with the bottle order were NOT used.</td></t<>		O to provide preservative traceability. If the preservatives supplied with the bottle order were NOT used, please attach your preservative information with this COC.	It oppovide preservative traceability. If the preservatives supplied with the bottle order were NOT used, please attach your preservative information with this COC.	It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. It is the preservative traceability. If the preservative supplied with the bottle order were NOT used, please attach your preservative information with this COC. It is the preservative traceability. If the preservative supplied with the bottle order were NOT used.
Montana Resources Dustfall A. Air A. Air Rumber Phone 406-498-4199 N. Wate N. Wate N. Wate An turnaround times are standard as Rumber Phone 406-498-4199 Sendst N. Wate N. Wate Rumber Phone 406-498-4199 Sendst N. Wate Rumber Phone 406-498-4199 N. Wate Rumber Phone 406-498-4199 N. Wate Rumber Phone 406-498-4199 Rumber Phone 406-498-4199 M. Wate Rumber Phone 406-498-4199 Rumber Phone 406-498-499 Rumber Phone 406-498-498 Rumber Phone 406-498-498 Rumber Phone 406-498 Rumstruction Phone		to provide preservative traceability. If the preservatives supplied with the bottle order were NOT used, please attach your preservative information with this COC.	to provide preservative traceability. If the preservatives supplied with the bottle order were NOT used, please attach your preservative information with this COC.	to provide preservative traceability. If the preservatives supplied with the bottle order were NOT used, please attach your preservative information with this COC. $\frac{mi}{H \subset F} = \frac{Date Time}{4 \sqrt{12} C I S} = \frac{Signature}{5 \sqrt{12} C I S} = \frac{Received by Laboratory (print)}{2 \sqrt{12} C I S} = \frac{Received by Laboratory (print)}{2 \sqrt{12} C I S} = \frac{Received by Laboratory (print)}{2 \sqrt{12} C I S} = \frac{Received by Laboratory (print)}{2 \sqrt{12} C I S \sqrt{12} C$

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-01/21 v.4

APPENDIX D: COMMON GUIDELINES FOR AIRBORNE CONTAMINANTS

Dose and Risk Assessment References

Pollutant Arsenic	Organization	Standard Type	Description	Value	Units	Time Period	Reference
Arsenic	WHO	Air Quality Guideline		0.0015	Unit Risk	Life-time	https://www.atsdr.cdc.gov/toxprofiles/tp2-c8.pdf
	NIOSH	REL		2	µg/m ³	15 min	https://www.atsdr.cdc.gov/toxprofiles/tp2-c8.pdf
	ACGIH	TLV (TWA)		10	μg/m ³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	OSHA	PEL (TWA)	General - organic As	200	μg/m ³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	OSHA	PEL (TWA)	General - inorganic As	10	μg/m ³	8-hour	https://www.atsdr.cdc.gov/toxprofiles/tp2-c8.pdf
	OSHA	PEL (TWA)	Construction - organic	500	$\mu g/m^3$	8-hour	https://www.atsdr.cdc.gov/toxprofiles/tp2-c8.pdf
	OSHA	PEL (TWA)	Shipyard - organic	500	$\mu g/m^3$	8-hour	https://www.atsdr.cdc.gov/toxprofiles/tp2-c8.pdf
	EPA	EPA- Ca	Noncancer	0.015	$\mu g/m^3$		https://www.epa.gov/sites/production/files/2014-05/documents/table1.
	EPA	IRIS	Risk = 10 ⁻⁶ (lifetime)	0.043	$\mu g/m^3$	Life-time	https://www.epa.gov/sites/production/files/2014-05/documents/table1.
	EPA	REL	. ,	0.20	ug/m ³	1-Hour	https://www.epa.gov/sites/production/files/2014-05/documents/table2.
	EPA	RfC	Inorganic As	0.015	ug/m ³	Life-time	https://semspub.epa.gov/work/HQ/401635.pdf - (November, 2021)
	EPA	RSL	Cancer Risk @ 10 ⁻⁶	0.65	ng/m ³	Life-time	https://semspub.epa.gov/work/HO/401635.pdf - (November, 2021)
	EPA	RSL	HI = 1	0.016	μg/m ³		https://semspub.epa.gov/work/HQ/401635.pdf - (November, 2021)
Cadmium							
cuumum	ACGIH	TLV (TWA)	(total)	10	µg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	ACGIH	TLV (TWA)	(respirable)	2	µg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	OSHA	PEL (TWA)		5	µg/m³		https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	EPA	ATSDR	Noncancer - Cd Compounds	0.01	µg/m ³	Chronic	https://www.epa.gov/sites/production/files/2014-05/documents/table1.
	EPA	IRIS	Cancer - Cd Compounds	2	µg/m ³	Chronic	https://www.epa.gov/sites/production/files/2014-05/documents/table1.
	EPA	MRL	Cd Compounds	0.03	µg/m ³	Acute	
	EPA	AEGL-1 (1-hr)	Cd Compounds	100	µg/m ³	1-Hour	https://www.epa.gov/sites/production/files/2014-05/documents/table2.
	EPA	AEGL-1 (8-hr)	Cd Compounds	41	µg/m ³	8-Hour	https://www.epa.gov/sites/production/files/2014-05/documents/table2.
	EPA	RfC	Cd (water)	0.01	$\mu g/m^3$	Life-time	https://semspub.epa.gov/work/HQ/401635.pdf - (November, 2021)
	EPA	RSL: TR @ 10 ⁻⁶	Cd (water) (Cancer Risk)	1.60	ng/m ³	Life-time	https://semspub.epa.gov/work/HQ/401635.pdf - (November, 2021)
	EPA	RSL: HI = 1	Cd (water) (Noncancer Risk)	10	ng/m ³	HI=1	https://semspub.epa.gov/work/HQ/401635.pdf - (November, 2021)
Copper							
	ACGIH	TLV (TWA)	(dust & mist)	1,000	µg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	NIOSH	REL (TWA)		1,000	µg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	OSHA	PEL (TWA)		1,000	µg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
Lead (Pb)							
	ACGIH	TLV (TWA)	(inorganic)	50	µg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	NIOSH	REL (TWA)	(inorganic+ organic salts)	50	µg/m ³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	OSHA	PEL (TWA)	(inorganic)	50	$\mu g/m^3$	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	EPA	NAAQS		0.150	µg/m³	3-month mean	40 CFR 50.12 (and Appendix R)
	NIOSH	IGHL/10	Lead compounds	10	mg/m ³		https://www.epa.gov/sites/production/files/2014-05/documents/table2.
	EPA	RSL: HI = 1	Pb (Noncancer Risk)	0.15	μg/m³	HI=1	https://semspub.epa.gov/work/HQ/401635.pdf - (November, 2021)
/langanese							
	ACGIH	TLV (TWA)	(compounds + fumes)	20	µg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	NIOSH	REL (TWA)	(compounds + fumes)	1,000	µg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	OSHA	PEL (TWA)	(compounds + fumes)	5,000	µg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	ATSDR	Screen for Risk Assessment	Noncancer - Mn Compounds	0.30	µg/m ³	Chronic	https://www.epa.gov/sites/production/files/2014-05/documents/table2.
	NIOSH	IGHL/10	Manganese compounds	50	mg/m ³		https://www.epa.gov/sites/production/files/2014-05/documents/table2.
	USDOE	TEEL-1	MnO, MO ₂ & MnSO ₄	4.7	mg/m ³	1-Hour	https://www.epa.gov/sites/production/files/2014-05/documents/table2.j
	EPA	RSL: HI = 1	Mn (non-diet) (Noncancer Risk)	0.052	µg/m³	HI=1	https://semspub.epa.gov/work/HQ/401635.pdf - (November, 2021)
	EPA	RfC	Mn (non-diet)	0.05	μg/m³	Life-time	https://semspub.epa.gov/work/HQ/401635.pdf - (November, 2021)
lybdenum							
	ACGIH	TLV (TWA)	(soluble compounds)*	500	µg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	NIOSH	REL (TWA)	(soluble compounds)*	N/A	μg/m ³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	OSHA	PEL (TWA)	(soluble compounds)*	5,000	µg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html

Zinc (Zn)								
	ACGIH	TLV (TWA)	(zinc oxide - respirable)	2,000	µg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html	
		STEL	(zinc oxide - respirable)	10,000	µg/m³	15 minutes	https://www.osha.gov/dsg/annotated-pels/tablez-1.html	
	OSHA	PEL (TWA)	(inorganic)	5,000	µg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html	
	Term	Definition						
	ACGIH	IH American Congress of Governmental Industrial Hygienists						
	AEGL-1	Acute exposure guideline	levels for mild effects: 1-hour and	8-hour				
	ATSDR	Agency for Toxic Substan	ices & Disease Registry					
	HI (EPA)	Hazardous Index: Aggrega	ate exposures below a HI of 1.0 will	likely no	t result in ad	verse noncancer	health effects over a lifetime of exposure. A respiratory HI greater than 1.0 can be	
		best described as indicati	ng that a potential may exist for ad	verse irri	tation to the	respiratory syste	em. https://archive.epa.gov/airtoxics/nata/web/html/gloss.html	
	IDHL/10	IDHL/10 One-tenth of levels determined by NIOSH to be imminently dangerous to life and death.						
	IRIS	Integrated Risk Informatio	on System					
	NAAQS	National Ambient Air Quality Standards: 40 CFR 50.12 H National Institute of Occupational Safety and Health (part of CDC)						
	NIUSH							
	PEL (MIGGIN	Permissible Exposure Limits (expressed as 8-hour time weighted average (IWA)) 29 CFR 1910.1000 Z-1 Table						
	REL (NIUSH)	California EDA concontra	tion level at which no advorse he	eves prot	ects worker	sarety and near	n over a working metime.	
	REL (CaEPA)	L (CaEPA) California EPA concentration level at which no adverse health effect are anticipated. Includes most sensitive individuals Levels exceeding KEL does not						
	RfC	Reference Concentration	(FPA) is an estimate (with uncert	ainty sn:	nning norha	ns an order of ma	agnitude)	
	inc	of a continuous inhalatio	n exposure to the human population	on (inclue	ting sensitive	subgroups) that	is likely	
		or a continuous initiation exposure to the numain population (including sistive suggroups) that is newy to be without an anyone/historia distancia set for the sistive suggroups (that is newy						
	RSI	Residential Regional Scre	ening Level (FPA Region X) @ 10	⁶ Cancer	Risk or (Nor	cancer) Hazardo	ous Index (HI) = 1 (based on Hazard Quotient (HQ) of 1	
	NOL	nesideritali negional screening Lever (ErA Negion A) @ 10 Cancer Nisk of (Noncancer) nazarudous index (m) = 1 (based on nazarud Quotieni (m2) of 1. https://semspub.epa.gov/work/HQ/401635.pdf Last (EPA) Table Update: November 2021 Short-Tarm Evnosue limit (15:minutes)						
	STEL							
	TEEL-1	Temporary emergency exc	oosure limits for mild transient effe	cts for 1-	hour exposu	re		
	TLV	Threshold Limit Value						
	TWA	Time Weighted Average						
	WHO	World Health Organizatio	on					
		-						

BGI PQ200 TSP Sampler – Monthly Calibration Checks					
Date: 01/29/2024	Time: 1445-1505 MST	Sampler Serial Number: 90133			
Performed By: Steve He	ck	Location (field or lab): Pine St			
Ref Standard & S/N: 1) Swift 25.0 SN D10	6202	Certification Date: 1) 11-08-2023	Certification Date: 1) 11-08-2023		
Ba	arometric Pressure	Sensor Verification			
Reading (mm Hg)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 10)		
Ambient Pressure	629 mm Hg	628.8 mmHg	+0.2		
	Temperature Ser	sor Verification			
Reading (degrees Celsius)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 2ºC)		
Ambient Temperature	12.1 C	12.6 C	-0.5 C		
Filter Temperature	14.5 C	14.9 C	-0.4 C		
	Leak C	heck			
Vacuum Readings (cm H₂O)	Start 141	End 140	Pass Fail		
	Flow Rate V	erification			
Reading (liters per minute)	Sampler (a)	Reference Standard (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)		
Operating flow rate check	16.7	17.20	-2.9%		
Reading (liters per minute)	Reference Standard (b)	Design Flow Rate Standard (c)	% Difference 100*(b–16.7)/16.7 (must be ≤ ± 5%)		
Design flow rate calculation	17.20	16.7	+3.0%		

BGI PQ200 TSP Sampler – Monthly Calibration Checks						
Date: 02/22/2024	Time: 1201-1220 MST	Sampler Serial Number: 90133				
Performed By: Steve He	ck	Location (field or lab): Pine St				
Ref Standard & S/N: 1) Swift 25.0 SN D10	6202	Certification Date: 1) 11-08-2023	Certification Date: 1) 11-08-2023			
Ba	Barometric Pressure Sensor Verification					
Reading (mm Hg)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 10)			
Ambient Pressure	626 mm Hg	627.0 mmHg	-1.0			
	Temperature Ser	sor Verification				
Reading (degrees Celsius)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 2ºC)			
Ambient Temperature	2.5 C	2.7 C	-0.2 C			
Filter Temperature	5.3 C	4.4 C	+0.9 C			
	Leak C	Check				
Vacuum Readings (cm H₂O)	Start 135	End 134	Pass Fail			
	Flow Rate V	/erification				
Reading (liters per minute)	Sampler (a)	Reference Standard (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)			
Operating flow rate check	16.7	16.70	0.0%			
Reading (liters per minute)	Reference Standard (b)	Design Flow Rate Standard (c)	% Difference 100*(b–16.7)/16.7 (must be ≤ ± 5%)			
Design flow rate calculation	16.70	16.7	0.0%			

BGI PQ200 TSP Sampler – Monthly Calibration Checks				
Date: 03/15/2024 Time: 1345 - 1407 MST Sampler Serial Number: 90133				
Performed By: Steve He	ck	Location (field or lab): Pine St		
Ref Standard & S/N: 1) Swift 25.0 SN D16	6202	Certification Date: 1) 11-08-2023		
Ва	arometric Pressure	Sensor Verification		
Reading (mm Hg)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 10)	
Ambient Pressure	627 mm Hg	627.3 mmHg	-0.3	
	Temperature Ser	sor Verification		
Reading (degrees Celsius)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 2ºC)	
Ambient Temperature	5.4 C	5.9 C	-0.5 C	
Filter Temperature	8.6 C	8.3 C	+0.3 C	
Leak Check				
Vacuum Readings (cm H₂O)	Start 137	End 136	Pass Fail	
Flow Rate Verification				
Reading (liters per minute)	Sampler (a)	Reference Standard (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)	
Operating flow rate check	16.7	17.25	-3.2%	
Reading (liters per minute)	Reference Standard (b)	Design Flow Rate Standard (c)	% Difference 100*(b–16.7)/16.7 (must be ≤ ± 5%)	
Design flow rate calculation	17.25	16.7	+3.3%	
Performed multipoint flow cal.				
As left: 15.0 LPM: 15.03 18.4 LPM: 18.40 16.7 LPM: 16.69				
As-left operating flow: 16.69 LPM				

BGI PQ200 TSP Sampler – Monthly Calibration Checks						
Date: 04/11/2024	Time: 1400 - 1418 MST	Sampler Serial Number: 90133				
Performed By: Steve He	ck	Location (field or lab): Pine St				
Ref Standard & S/N: 1) Swift 25.0 SN D10	6202	Certification Date: 1) 11-08-2023				
Ba	Barometric Pressure Sensor Verification					
Reading (mm Hg)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 10)			
Ambient Pressure	621 mm Hg	621.4 mmHg	-0.4			
	Temperature Ser	sor Verification				
Reading (degrees Celsius)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 2ºC)			
Ambient Temperature	15.0 C	15.4 C	-0.4 C			
Filter Temperature	16.8 C	17.0 C	-0.2 C			
	Leak Check					
Vacuum Readings (cm H₂O)	Start 140	End 139	Pass Fail			
	Flow Rate V	/erification				
Reading (liters per minute)	Sampler (a)	Reference Standard (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)			
Operating flow rate check	16.7	17.17	-2.7%			
Reading (liters per minute)	Reference Standard (b)	Design Flow Rate Standard (c)	% Difference 100*(b–16.7)/16.7 (must be ≤ ± 5%)			
Design flow rate calculation	17.17	16.7	+2.8%			

BGI PQ200 TSP Sampler – Monthly Calibration Checks						
Date: 01/29/2024	Time: 1540-1602 MST	Sampler Serial Number: 90129				
Performed By: Steve He	ck	Location (field or lab):	Location (field or lab): Walnut St			
Ref Standard & S/N: 1) Swift 25.0 SN D16202	2	Certification Date: 1) 11-08-2023				
Ba	arometric Pressure	Sensor Verification				
Reading (mm Hg)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be $\leq \pm 10$)			
	023	023.1	-0.7			
	Temperature Ser	isor Verification	D.11			
Reading (degrees Celsius)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 2ºC)			
Ambient Temperature	12.5 C	13.4 C	-0.9 C			
Filter Temperature	13.4 C	13.6 C	-0.2 C			
	Leak Check					
Vacuum Readings (cm H₂O)	Start 137	End 136	Pass Fail			
	Flow Rate V	erification				
Reading (liters per minute)	Sampler (a)	Reference Standard (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)			
Operating flow rate check	16.7	16.88	-1.1%			
Reading (liters per minute)	Reference Standard (b)	Design Flow Rate Standard (c)	% Difference 100*(b–16.7)/16.7 (must be ≤ ± 5%)			
Design flow rate calculation	16.88	16.7	+1.1%			

BGI PQ200 TSP Sampler – Monthly Calibration Checks					
Date: 02/22/2024 Time: 1251-1303 Sampler Serial Number: 00120					
Date. 02/22/2024 Time. 1231-1303		Leastion (field or lab):			
Performed by: Sleve ne	СК		Location (field or lab): Walnut St		
Ref Std: Swift 25.0 SN D)16202	Certification Date: 11/0	18/2023		
B	arometric Pressure	Sensor Verification			
Reading (mm Hg) Ambient Pressure	Sampler (a) 626	Reference Standard (b) 627.8	Difference (a - b) (must be $\leq \pm 10$) -1.8		
	Tomporaturo Sor	Varification	1.0		
Reading (degrees Celsius)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 2ºC)		
Ambient Temperature	3.0	3.8	-0.8		
Filter Temperature	5.6	5.1	+0.5		
	Leak C				
Vacuum Readings (cm H ₂ O)	Start 130	End 129	Pass Fail		
	Flow Rate V	/erification			
Reading (liters per minute)	Sampler (a)	Reference Standard (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)		
Operating flow rate check	16.7	16.76	-0.4%		
Reading _(liters per minute)	Reference Standard (b)	Design Flow Rate Standard (c)	% Difference 100*(b–16.7)/16.7 (must be ≤ ± 5%)		
Design flow rate calculation	16.76	16.7	+0.4%		
Comments: Performed before replacing old main PC board SN 221250101					
BGI PQ200 TSP Sampler – Monthly Calibration Checks					
--	------------------------------	-------------------------------------	---	--	--
Date: 02/22/2024	Time: 1407-1424	Sampler Serial Number: 90129			
Performed By: Steve He	ck	Location (field or lab):	Walnut St		
Ref Std: Swift 25.0 SN D	016202	Certification Date: 11/0	8/2023		
Ba	arometric Pressure	Sensor Verification			
Reading (mm Hg) Ambient Pressure	Sampler (a) 627	Reference Standard (b) 627.4	Difference (a - b) (must be $\leq \pm 10$) -0.4		
	Temperature Sen	sor Verification			
Reading (degrees Celsius)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 2ºC)		
Ambient Temperature	3.8	3.9	-0.1		
Filter Temperature	6.1	5.1 +1.0			
	Leak C	Check			
Vacuum Readings (cm H₂O)	Start 134	End 133	Pass Fail		
	Flow Rate V	erification			
Reading (liters per minute)	Sampler (a)	Reference Standard (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)		
Operating flow rate check	16.7	16.73	-0.2%		
Reading (liters per minute)	Reference Standard (b)	Design Flow Rate Standard (c)	% Difference 100*(b–16.7)/16.7 (must be ≤ ± 5%)		
calculation	16.73	16.7	+0.2%		
Comments:					
Performed after installing new main PC board SN 221250093					
Performed multipoint flow calibration: At 15.0 LPM setting flow = 15.04 At 16.7 LPM setting flow = 16.75 At 18.4 LPM setting flow = 18.42					

BGI PQ200 TSP Sampler – Monthly Calibration Checks					
Date: 03/15/2024	Time: 1435 - 1500	Sampler Serial Number: 90129			
Performed By: Steve Heck		Location (field or lab):	Walnut St		
Ref Std: Swift 25.0 SN D	16202	Certification Date: 11/0	8/2023		
Ba	arometric Pressure	Sensor Verification			
Reading (mm Hg) Ambient Pressure	Sampler (a) 628	Reference Standard (b) 627.8	Difference (a - b) (must be $\leq \pm 10$) +0.2		
	Temperature Ser	sor Verification			
Reading (degrees Celsius)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 2ºC)		
Ambient Temperature	6.3	6.6	-0.3		
Filter Temperature	8.7	8.9 -0.2			
	Leak C	Check			
Vacuum Readings (cm H₂O)	Start 137	End 135	Pass Fail		
	Flow Rate V	/erification			
Reading (liters per minute)	Sampler (a)	Reference Standard (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)		
Operating flow rate check	16.7	16.85	-0.9%		
Reading (liters per minute)	Reference Standard (b)	Design Flow Rate Standard (c)	% Difference 100*(b–16.7)/16.7 (must be ≤ ± 5%)		
Design flow rate calculation	16.85	16.7	+0.9%		
Comments:					

BGI PQ200 TSP Sampler – Monthly Calibration Checks					
Date: 04/11/2024	Time: 1425 - 1440	Sampler Serial Number: 90129			
Performed By: Steve He	ck	Location (field or lab):	Walnut St		
Ref Std: Swift 25.0 SN D	16202	Certification Date: 11/0	8/2023		
Ba	arometric Pressure	Sensor Verification			
Reading (mm Hg) Ambient Pressure	Sampler (a) 622	Reference Standard (b) 622.2	Difference (a - b) (must be $\leq \pm 10$) -0.2		
	Temperature Ser	sor Verification			
Reading (degrees Celsius)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 2ºC)		
Ambient Temperature	14.2	14.7	-0.5		
Filter Temperature	15.9	16.0	-0.1		
	Leak C	Check			
Vacuum Readings (cm H₂O)	Start 138	End 137 Pass –			
	Flow Rate V	erification			
Reading (liters per minute)	Sampler (a)	Reference Standard (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)		
Operating flow rate check	16.7	17.03	-1.9%		
Reading (liters per minute)	Reference Standard (b)	Design Flow Rate Standard (c)	% Difference 100*(b–16.7)/16.7 (must be ≤ ± 5%)		
Design flow rate calculation	17.03	16.7	+2.0%		
Comments:					

APPENDIX F: CALIBRATION STANDARD CERTIFICATION SHEETS

Mesa Labs 12100 W. 6th Ave Lakewood, CO 80228

NIST Traceable Calibration Facility

CERTII Calibration Re TetraCal Serial No Calibration Techn Recommended Recal	FICATE OF CA port #: umber: 149645 ician: Melissa S Date: 4-Dec-20 Date: 4-Dec-20	LIBRA 149645 ardoni 23 24	TION - NI -04122023	ST TRAC	EABILITY
Critical Venturi Flow	Meter				
			Max Uncert	ainty = 0.346%	6
TE20004	6 - 30.00 LPM		Calib	pration Due:	25-Sep-2024
TE20006	1.40 - 6.0 LPM		Calib	pration Due:	25-Sep-2024
TE20008	0.40 - 1.20 LPM		Calib	pration Due:	26-Sep-2024
Room Temperature: Brand:	+- 0.03°C from -5 Eutechnics	°C - 70°C	Room Ten	nperature:	24.40 °C
TE Number:	TE12312	Ser	ial Number	: 358	3921
Std Cal Date:	1-Sep-23	Std Ca	al Due Date	: 1-Se	ep-24
Ambient Temperature Aux (filter) Temperatur	(set): 24.8 e (set): 24.4	°C °C			
Barometric and Abso Vaisala Model PT	l ute Pressure B330 (50-1100) I	Digital Ac	curacy: 0.0	3371%	
TE Number:	TE20203	Serial	Number:	U123	20936
Std Cal Date:	6-Jun-23	Std Cal	Due Date:	6-Ju	in-24
TetraCal: Barometric pressure	e (set): 617.20	mmHg			
Results of Ventu Flow Rate (Q) vs. Pres Venturi	ri Calibration sure Drop (ΔP).			Where: Q=Lj	om, ΔP= Cm of H2O
TE20004	Q1 = 5.45324	ΔΡ ^	0.51821	Overall Un	certainty: 0.35%
TE20006	Q2 = 1.17346	ΔΡ ^	0.52812	Overall Un	certainty: 0.35%
TE20008	Q3 = 0.21591	ΔP ^	0.52812	Overall Un	certainty: 0.35%

Mesa Labs 12100 W. 6th Ave Lakewood, CO 80228

NIST Traceable Calibration Facility

As Shipped Calibration Data for TetraCal

U	Unit Type: TetraCal TC12			Date	Tech	nician				
Flow	w Range: 1.20 -30.	00 LPM		04Dec2023	Melissa	Sardoni	1			
Se	erial No. : 149645			Ambient	Pressure:	617	mmHg			
	Firmware Version:	3.41P		Ambient -	Temperature:	24.4	°C			
Range 1	12-600 PM	T	Static	Barometric						
i dango ii		Test	Pressure	Pressure	Venturi Qa	DUT Qa	% error			
Venturi	1E20004	#	mmHg	mmHg	LPM	LPM	%			
Туре	1A	1	122.34	617.7	5.968	5.975	0.117			
Flow range	6 - 30.00 LPM	2	363.64	617.7	18.103	17.991	-0.619			
		3	594.51	617.7	29.713	29.903	0.639			
			Maximu	m allowable	error at	Average	0.046			
			any fl	ow rate is 0).75%.	Result	PASS			
Range 2:	6.00 - 30.0 LPM		Static	Barometric						
		lest	Pressure	Pressure	Venturi Qa	DUT Qa	% error			
Venturi	TE20006	#	mmHg	mmHg	LPM	LPM	%			
Туре	2A	1	107.98	617.7	1.503	1.496	-0.466			
Flow range	1.40 - 6.0 LPM	2	232.85	617.7	3.309	3.295	-0.423			
		3	416.30	617.7	5.961	5.987	0.436			
			Maximur	n allowable	error at	Average	-0.151			
			any flo	ow rate is 0	.75%.	Result	PASS			
Ran	ae 3: NP		Static	Barometric						
Mandal	TEODOO	l est	Pressure	Pressure	Venturi Qa	DUT Qa	% error			
venturi	TE20008	#	mmHg	mmHg	LPM	LPM	%			
Туре	3A	1	218.27	617.2	0.499	0.496	-0.601			
Flow range	0.40 - 1.20 LPM	2	342.63	617.2	0.800	0.796	-0.500			
		3	507.69	617.7	1.199	1.197	-0.167			
			Maximur	n allowable	error at	Average	-0.423			
			any flo	ow rate is 0	.75%.	Result	PASS			
Perfor	mod By: Melissa Sar	loni			Deter	4 Dec 2022				
					Date:	4-Dec-2023				
	ilovin	1a. Sai	ATU							
	Leona	rd Rainert								
Appr	oved By: Qualit	y Specialist			Date:	OBDECZO	123			
-		1	M ' ~	_						
	-m	nd l	hm							

Mesa Labs 12100 W. 6th Ave Lakewood, CO 80228

NIST Traceable Calibration Facility

As-Found data for TetraCal								
	Unit Type:	TetraCal	TC12		Date	Tec	hnician	ו
Flo	w Range:	1.20 -30.0	DO LPM		04Dec2023	Meliss	a Sardoni	1
S	erial No. :	149645			Ambi	ent Pressure	617	mmHg
	Firmware	Version:	3.	41P	Ambient	Temperature	: 24.4	°C
	As Re	ceived Tem	p. Press. Ca	libration	As Sh	nipped Temp	. Press. Calil	oration
	DUT	Standard	Diff	+/- 1 mmHg	DUT	Standard	Diff	+/-1 mmHg
Pres _{AMB} mmHg	616.5	616.7	-0.2	Pass	617.2	617.1	0.1	Pass
	DUT	Standard	Diff	+/- 1 °C	DUT	Standard	Diff	+/- 1 °C
Temp _{AMB} °C	23.3	23.2	0.1	Pass	24.8	24.4	0.4	Pass
Temp _{Filter} °C	24.4	24.4	0	Pass	24.4	24.4	0	Pass
	Offset	New Offset						
	-47	-46.8						
	0.25	0.15						
	0.15	0.15		0				
Range 1	: 1.2 - 6.0	0 LPM	Test	Static	Barometric	Vonturi Oo		0/ 07505
Venturi	TF2	0004	#	mmHa	mmHa		LDUI Qa	% enor
Type	1	Δ	1	124.11	617 0	6 059		0.858
Flow range	6 - 30 (2	365 22	617.5	18 17	18.008	-0.000
<u>i lott lungo</u>	0 00.		3	594 30	617.0	20.711	20 788	0.052
		I		Maximur	n allowable	error at		-0.497
				any flo	ow rate is 0	.75%	Result	FAIL
				Static	Baromotrio		rtoourt	
Range 2:	6.00 - 30	0 LPM	Test	Pressure	Pressure	Venturi Qa	DUT Qa	% error
Venturi	TE2	0006	#	mmHg	mmHg	LPM	LPM	%
Туре	2	A	1	109.62	617.0	1.526	1.505	-1.376
Flow range	1.40 - 6	.0 LPM	2	235.68	617.0	3.349	3.310	-1.165
			3	419.04	617.5	5.994	5.981	-0.217
				Maximun	n allowable	error at	Average	-0.919
				any flo	w rate is 0	.75%.	Result	FAIL
Des	2. ND			Static	Barometric			
Rai	ige 3: NP		Test	Pressure	Pressure	Venturi Qa	DUT Qa	% error
Venturi	TE20	8000	#	mmHg	mmHg	LPM	LPM	%
Туре	3,	4	1	217.24	617.5	0.495	0.496	0.202
Flow range	0.40 - 1.	20 LPM	2	346.69	617.5	0.808	0.803	-0.619
			3	507.24	617.5	1.198	1.196	-0.167
		-		Maximum	n allowable	error at	Average	-0.195
					w rate is 0	.75%.	Result	PASS

Mesa Labs 12100 W. 6th Ave Lakewood, CO 80228 NIST Traceable Calibration Facility

CERTIFICATE OF CALIBRATION - NIST TRACEABILITY

Calibration Report #: 1288-03012024 DeltaCal Serial Number: 1288 Calibration Technician: Elsy Lasky Date: 3-Jan-2024 Recommended Recal Date: 3-Jan-2025

Critical Venturi Flow Meter Max Uncertainty = 0.346% TE20005 6 - 30.00 LPM Calibration Due: 1-Aug-2024 1.40 - 6.0 LPM TE20007 Calibration Due: 2-Aug-2024 **Room Temperature:** +- 0.03°C from -5°C - 70°C **Room Temperature:** 22.90 °C Brand: Eutechnics TE Number: TE12348 Serial Number: A11146 Std Cal Date: 29-Sep-23 Std Cal Due Date: 29-Sep-24 Ambient Temperature (set): 23.0 °C

Aux (filter) Temperature (set):

Barometric and Absolute Pressure							
Vaisala Model PTB330 (50-1100) Digital Accuracy: 0.03371%							
TE Number:	TE12311	Serial Number:	H0850001				
Std Cal Date:	6-Aug-23	Std Cal Due Date:	6-Aug-24				

23.0 °C

DeltaCal:

Barometric pressure (set): 616.00 mmHg

Results of Venturi Calibration

Flow Rate (Q) vs. Press Venturi	Where: Q=Lpm, Δ P= Cm of H2O			
TE20005	Q= 4.02226	ΔΡ ^	0.51536	Overall Uncertainty: 0.35%
TE20007	Q=3.95205	ΔΡ ^	0.52799	Overall Uncertainty: 0.35%

Mesa Labs 12100 W. 6th Ave Lakewood,

CO 80228

NIST Traceable Calibration Facility

As Shipped Calibration Data for DeltaCal

Γ

Date

Unit Type:	DC 1
Flow Range:	1.5-19.5 LPM
Serial No. :	1288
Firmware	Version: 4.00P

03Jan2024	Elsy La	7		
	· · ·			
Ambient Pressure:		616.2	mmHg	
Ambient T	emperature:	22.9	°C	

Technician

٦

							A
Range 1			Static	Barometric			
		Test	Pressure	Pressure	Venturi Qa	DUT Qa	% error
Venturi	TE20005	#	mmHg	mmHg	LPM	LPM	%
Туре	1B	1	134.39	615.4	6.530	6.504	-0.398
Flow range	6 - 30.00 LPM	2	205.14	615.4	10.048	10.005	-0.428
		3	267.02	615.4	13.124	13.040	-0.640
		4	326.09	615.4	16.061	15.978	-0.517
		5	368.21	615.4	18.155	18.063	-0.507
		6	403.83	615.4	19.926	19.806	-0.602
			Maximu	m allowable	e error at	Average	-0.515
			any fl	ow rate is 0	.75%.	Result	PASS
R	ange 2	Test	Static	Barometric			
		lest	Pressure	Pressure	Venturi Qa	DUT Qa	% error
Venturi	1E20007	#	mmHg	mmHg	LPM	LPM	%
Туре	2B	1	139.56	615.9	1.941	1.953	0.618
Flow range	1.40 - 6.0 LPM	2	206.07	615.9	2.895	2.908	0.449
		3	261.31	615.9	3.687	3.713	0.705
		4	322.98	615.9	4.571	4.569	-0.044
		5	371.60	615.9	5.268	5.248	-0.380
		6	417.85	615.9	5.931	5.904	-0.455
			Maximum allowable error at			Average	0.149
			any flow rate is 0.75%			Depult	DACO

Performed By: Elsy Lasky	Date: 3-Jan-2024
En Julas	
Approved By: TROY THACKER	Date: 0737AN2024
Hog Macker	

Mesa Labs 12100 W. 6th Ave Lakewood, CO 80228

NIST Traceable Calibration Facility

As-Found data for DeltaCal

Unit Type:	DC 1	
Flow Range:	1.5-19.5 L	.PM
Serial No. :	1288	
Firmware	Version:	4.00P

Date	Technician
03Jan2024	Elsy Lasky

Ambient Pressure:616.2mmHgAmbient Temperature:22.9°C

	As Re	ceived Tem	p. Press. Ca	alibration	As SI	nipped Temp	o. Press. Cal	ibration
Dree	DUT	Standard	Diff	+/- 1 mmHg	DUT	Standard	Diff	+/-1 mmHg
Pres _{AMB} mmHg	618	617.9	0.1	Pass	615.9	616.2	-0.3	Pass
	DUT	Standard	Diff	+/- 1 °C	DUT	Standard	Diff	+/- 1 °C
Temp _{AMB} °C	22.5	22.5	0	Pass	23	22.9	0.1	Pass
Temp _{Filter} °C	22.5	22.5	0	Pass	23	22.9	0.1	Pass
	Offset	New Offset				_et in the state <u>in a</u> ge the by statement		
Presame	3	2.9						
	0	0						
Temp Filler		U						
R Venturi	ange 1 TE2	0005	Test #	Static Pressure mmHa	Barometric Pressure mmHa	Venturi Qa	DUT Qa	% error
Туре	1	В	1	134 61	616.0	6.533	6 4 9 9	0.520
Flow range	6 - 30.0	DO LPM	2	204.39	616.0	9 997	0.400	-0.520
			3	264 52	616.0	12 083	12 802	-0.530
			4	326 16	616.0	16.043	15 027	-0.093
			5	369 74	616.0	18 208	18 082	-0.723
			6	404 37	616.0	10.200	10.002	-0.092
				Maximun	allowable	error at	19.020 Average	-0.537
				any flo	w rate is 0	75%	Posult	PASS
					W TALC 15 U	.7570.	Result	T AOO
R	ange 2			Static	Barometric			
Mandani			Test	Pressure	Pressure	Venturi Qa	DUT Qa	% error
	IEZU	1007	#	mmHg	mmHg	LPM	LPM	%
Туре	21	В	1	139.22	616.0	1.935	1.952	0.879
Flow range	1.40 - 6	.0 LPM	2	200.99	616.5	2.818	2.814	-0.142
			3	267.78	616.5	3.775	3.782	0.185
			4	318.96	616.5	4.507	4.505	-0.044
			5	370.03	616.5	5.239	5.244	0.095
		L	6	422.60	616.5	5.992	5.995	0.050
				Maximum	allowable	error at	Average	0.171
				any flo	w rate is 0.	.75%.	Result	FAIL

Met One Instruments, Inc.

1600 NW Washington Blvd · Grants Pass, OR 97526 · (541) 471-7111 · www.metone.com

Certificate of Calibration Model Swift 25.0

Serial Number : D16202

Firmware: R1.0.2

Calibrated Date: 11/8/2023

Calibrated By: J.Taylor

Standard	Swift 25.0	Acceptable	In Tolerance
(SLPM)	(SLPM)	Range	
2	2.01	1.98 - 2.02	Pass
5	5.00	4.95 - 5.05	Pass
7	6.97	6.93 - 7.07	Pass
10	9.99	9.90 - 10.10	Pass
12	12.00	11.88 - 12.12	Pass
15	15.01	14.85 - 15.15	Pass
17	17.00	16.83 - 17.17	Pass
20	19.99	19.80 - 20.20	Pass
23	22.99	22.77 - 23.23	Pass
25	25.00	24.75 - 25.75	Pass

Standard	Swift 25.0	In
(SLPM)	(SLPM)	Tolerance
19.51	19.51	Pass

Standard	Swift 25.0	In
(°C)	(°C)	Tolerance
19.51	19.52	Pass

Standard	Swift 25.0	In
(mbar)	(mbar)	Tolerance
992.3	992.9	Pass

Standard	Swift 25.0	In
(RH%)	(RH%)	Tolerance
46	43	Pass

Calibration Procedure: Swift 25.0-6100 Recommended Calibration Interval: 12 months from the first day of use

Standards	Model	SN	Cal Due
Air Flow Meter	M-50SLPM-D	306982	8/31/2024
RH & TEMPERATURE	HC2-S & HP22-A	61174458	6/1/2024
BAROMETRIC PRESSURE	092	T17328	August 21,2024

This instrument has been tested and calibrated to meet the manufacturer's published specifications at an ISO-9001 certified facility. The standards used for the calibration are on record and traceable to the National Institute of Standards and Technology (NIST) and have accuracies equal to or greater than the instrument being tested. The calibration system complies with MIL-STD-45662A. Complete test records for each unit are maintained by Met One Instruments, Inc. and are available upon request.