

MONTANA RESOURCES LLP

DATA REPORT FOR TSP AND DUSTFALL MONITORING STATIONS IN BUTTE, MONTANA QUARTER 3, 2024

Prepared for:

Montana Resources LLP 600 Shields Avenue Butte, MT 59701

Prepared by:

Bison Engineering, Inc. 3143 E. Lyndale Avenue Helena, MT 59601 (406) 442-5768 http://www.bison-eng.com

January 10, 2025

CERTIFICATION OF DATA INTEGRITY

Bison Engineering, Inc. certifies the data in this report is an accurate summary of the air quality and meteorological conditions measured at the Greeley School ambient monitoring site. Every reasonable effort was made to obtain accurate and representative data and to comply with the procedures set forth in the project-specific *Quality Assurance Project Plan (QAPP)*, *State of Montana Ambient Air Monitoring Program Quality Assurance Project Plan (April 2013)*, and the Environmental Protection Agency's *Volume II: Ambient Air Quality Program (January 2017)*

Preparer:	Steven R. Heck
Signature:	Steven R Heel
Title:	Meteorologist
Date:	December 18, 2024
Reviewer:	Harold W. Robbins
	Harold Rolli
Signature:	
Title:	Executive Manager
Date:	January 3, 2025

TABLE OF CONTENTS

CERTIFICATION OF DATA INTEGRITYii
1.0 INTRODUCTION1
2.0 TSP SAMPLING DATA4
3.0 DUSTFALL SAMPLING DATA6
4.0 CHEMICAL ANALYSIS DATA – TSP SAMPLES7
5.0 CHEMICAL ANALYSIS DATA – DUSTFALL SAMPLES14
6.0 CALIBRATION DATA
7.0 QUARTERLY AUDIT/CALIBRATION RESULTS21
8.0 DATA COMPLETENESS24
9.0 COMPARISON TO AMBIENT AIR QUALITY STANDARDS26
LIST OF TABLES
Table 1: Summary of TSP Monitoring Data for Quarter 3, 20245
Table 2: Summary of Dustfall Monitoring Data for Quarter 3, 20246
Table 3a: Summary of Analytical Results – TSP Pine Street9
Table 3b: Summary of Analytical Results – TSP Walnut Street9
Table 3c: Summary of Analytical Results – Blanks
Table 4a: Summary of Airborne Trace Element Concentrations – TSP Pine Street 11
Table 4b: Summary of Airborne Trace Element Concentrations – TSP Walnut Street 12
Table 5: Summary of Airborne Trace Element Concentration Guidelines (ng/m³)13
Table 6a: Dustfall Results for July 2 – July 30, 2024
Table 6b: Dustfall Results for July 30 – August 29, 2024
Table 6c: Dustfall Results for August 29 – September 30, 2024
Table 7: Summary of Montana Resources – Pine St and Walnut St Sites Calibration/ Audit
Activities and Acceptance Criteria18
Table 8: Summary of Quarter 3, 2024 Calibration Verification Results
Table 9: Quarter 3, 2024 Audit Results
Table 10: Quarterly Data Completeness Summary – Filter Analysis Data
Table 11: Summary of Airborne Concentration vs. NAAQS27
LIST OF FIGURES
Figure 1: Butte Ambient Monitoring Locations

APPENDICES

Appendix A: Gravimetric Analysis Data

Appendix B: Laboratory Analysis Results – TSP Appendix C: Laboratory Analysis Results – Dustfall

Appendix D: Common Guidelines for Airborne Contaminants

Appendix E: Calibrations

Appendix F: Calibration Standard Certification Sheets

1.0 INTRODUCTION

Particulate monitoring has been conducted in the Greeley School area for many years, since the days of the Anaconda Company operation during the 1970s. Montana Department of Environmental Quality (MDEQ) and Butte-Silver Bow (BSB) County are currently performing the following monitoring:

- Continuous monitoring for PM₁₀ using a Met One Model 1020 Beta Attenuation Monitor (BAM-1020).
- Continuous monitoring for PM_{2.5} using a second Met One BAM-1020.
- Episodic monitoring for PM_{2.5} using a BGI Model PQ-200 sampler. This sampler collects particulate matter on a filter over a 24-hour period, which is subsequently analyzed gravimetrically to determine the average airborne PM_{2.5} concentration during the sampling period. The filter is then analyzed by an EPA laboratory for trace elements and mineralized compounds. This episodic sampling is performed every six days, concurrent with EPA's national one-in-six-day sampling schedule.
- The Greeley School site includes meteorological instruments that measure wind speed, wind direction and temperature.

MDEQ/BSB's monitoring provides continuous, real-time hourly $PM_{2.5}$ and PM_{10} concentrations, as well as $PM_{2.5}$ chemical composition data. In March 2019 and at Montana Resources' (MR) request, Bison Engineering Inc. (Bison) installed additional collocated monitoring equipment at the Greeley School:

- Total Suspended Particulate Sampler: A Met One E-Sampler that continuously
 measures hourly total suspended particulate (TSP) concentrations using a
 nephelometric technique that relates light scattering to ambient particulate
 concentration. Additionally, the sampler includes a filter that is analyzed for total
 particulate mass and trace elements. Prior to this study, no ongoing TSP monitoring
 was being performed,
- PM₁₀ Particulate Sampler: A BGI Model PQ-200 sampler that collects 24-hour inhalable particulate (PM₁₀) samples on a filter, concurrent with the EPA one-in-six-day sampling schedule. The filter is analyzed for particulate mass and for selected trace elements. The MDEQ BAM-1020 that is used for PM₁₀ hourly monitoring does not produce a filter suitable for chemical analysis.

The Bison data have been presented in quarterly reports since the first quarter of 2019. With few exceptions, the trace element data have shown airborne concentrations below the Guideline values shown in Section 4.0 of this report. However, citizens in the area between the Greeley school and MTR have expressed concerns about airborne particulate and the

associated trace element concentrations, as well as the composition of settled dust that residents have observed.

In response, MTR contracted Bison to perform additional monitoring as described below:

- BGI Model PQ-200 samplers are being used to collect 24-hour TSP samples on filters, concurrent with the EPA one-in-six-day sampling schedule. The filters are analyzed for particulate mass and for selected trace elements. These samplers were deployed at 2616 Pine Street and 1910 Walnut Street, with the first samples collected on July 11, 2023.
- Monthly Dustfall sampling was initiated on August 4, 2023, at the Pine Street and Walnut Street sites, and also at the existing Greeley School site. This sampling involves exposing a 15 cm diameter bucket to ambient conditions for a period of approximately 30 days, and then analyzing the collected particulate for total mass and trace elements. From these results, monthly particulate and trace element deposition rates are calculated.
- All sample collection duties are performed by Bison. Gravimetric analysis of TSP filters is also performed by Bison, while chemical analysis of those filters is performed by the Energy Laboratory Billings, MT facility. Both gravimetric and chemical analyses of the Dustfall samples are performed by the Energy Laboratory Helena facility.

Monitoring locations are depicted in Figure 1.

Figure 1: Butte Ambient Monitoring Locations

2.0 TSP SAMPLING DATA

The National Ambient Air Quality Standards (NAAQS) for TSP were first promulgated in 1971. The TSP standards were superseded by PM₁₀ standards in 1987, and additional particulate standards have been enacted since. Although no longer a criteria pollutant, TSP monitoring is appropriate for the objectives of the expanded monitoring since residents' concerns arose from visual observations of *total* particulate, rather than a particular size fraction.

Normally, TSP samples are collected for a period of 24 hours on the National EPA 6th-day sampling schedule. However, starting in December 2023 it was discovered that snow easily blows into the BGI PQ-200 TSP sampling heads and accumulates on the sampling filters – to the extent that it compromises the integrity of the sample. Additionally, in early January it was discovered that sufficient windblown snow accumulation on the filter could cause a sampling failure due to an overpressure error. Starting in January 2024, samples were scheduled for dates when snow was not expected. They were scheduled as close to the National 6th-day schedule as possible but constrained by expected weather conditions. Similarly, sample retrieval was often expedited to minimize the possibility of windblown snow accumulating following exposure. During the third quarter of 2024, no sampling events were affected by these considerations due to the absence of snow. All TSP samples were collected on the 6th-day sampling schedule.

Table 1 summarizes the TSP data collected during the third quarter of 2024. The Butte area was frequently impacted by wildfire smoke, which increased airborne particulate levels.

The arithmetic average quarterly TSP concentrations were 52 μ g/m³ at the Pine St site and 50 μ g/m³ at the Walnut St site. These values represent 69 percent and 67 percent of the historical geometric mean annual standard (75 μ g/m³)¹, respectively. The maximum TSP concentration of 93 μ g/m³ at Pine St occurred on July 29, while the maximum of 94 μ g/m³ at Walnut St occurred on August 4. Those maximum daily values were 36 percent of the historical 24-hour standard (260 μ g/m³)².

Data used to calculate average TSP concentrations from gravimetric analysis are presented in Appendix A. Chemical analysis results for the TSP filters are presented in Section 4.0 of this report.

² Ibid.

 $^{^1}$ Both the annual and 24-hour TSP standards were revoked in 1987. The annual standard was calculated as a geometric mean of all daily values in a single year. The 24-hour standard was determined as the 2^{nd} highest recorded value per year (on an assumed one-day-in-six schedule)

Table 1: Summary of TSP Monitoring Data for Quarter 3, 2024

Pine Street		Walnut Street			
Sample Collection Date (2024) ²	TSP ¹ (μg/m ³)	Sample Collection Date (2024) ²	TSP ¹ (μg/m ³)		
Jul 05	47	Jul 05	45		
Jul 11	62	Jul 11	62		
Jul 17	57	Jul 17	53		
Jul 23	62	Jul 23	47		
Jul 29	93	Jul 29	83		
Aug 04	71	Aug 04	94		
Aug 10	43	Aug 10	42		
Aug 16	48	Aug 16	52		
Aug 22	45	Aug 22	35		
Aug 28	23	Aug 28	21		
Sep 03	38	Sep 03	34		
Sep 09	90	Sep 09	90		
Sep 15	39	Sep 15	30		
Sep 21	25	Sep 21	30		
Sep 27	35	Sep 27	27		
Arithmetic Average	52	Arithmetic Average	50		
Single Day Maximum	93	Single Day Maximum	94		
Historical 24-Hour Standard ³		260			
Historical Geometric Mean Annual Standard ⁴		75			

 $^{^1}$ All values at local temperature and pressure (LTP). 2 Samples were collected from midnight to midnight (± 10 minutes) on a single calendar day unless noted otherwise.

³ Ibid.

⁴ Ibid.

3.0 DUSTFALL SAMPLING DATA

Dustfall monitoring was initiated at the Walnut, Pine and Greeley sites on August 4, 2023. Samples were collected over the following time periods at each site during the third quarter of 2024:

- July 2 July 30
- July 30 August 29
- August 29 September 30

Samples were collected using ASTM Method D1739-98R17. Each sampling event was started by placing clean, dry dustfall buckets at each site. They were then exposed to ambient conditions for approximately 30 days. No water was added to the buckets prior to deployment, although they collected any rain or snow that fell during the sampling period. Following collection, they were submitted to the Energy Lab Helena facility. Samples were visually inspected for insects or other non-dustfall detritus. Wet masses of each sample were collected, as received. Samples with insects present were passed through a No. 10 (2mm) sieve, removing the insects but allowing the dust and liquid to pass through. Sieves were rinsed with laboratory reagent water to ensure no dust was lost on the sieve. Samples were then air dried on a clean non-porous plastic to remove moisture. The dry weight of each sample was then recorded using the plastic as a tared mass. Collected dust was transferred to a digestion vessel using digestion reagents to ensure all dust was removed from the plastic; and digested for total metals analysis.

Table 2 summarizes the dustfall monitoring results for the third quarter of 2024. It is likely that the samples were impacted by persistent regional wildfire smoke during the third quarter. All but one of the monthly dustfall results were below the Montana Dustfall standard of $10 \text{ g/m}^2/30 \text{ days}$. The Pine St dustfall sample result for July 2 – July 30 was at $11.2 \text{ g/m}^2/30 \text{ days}$. The quarterly averages for all three sites were below that standard.

Table 2: Summary of Dustfall Monitoring Data for Quarter 3, 2024

Sample Collection Date (2024)	Greeley School DF (g/m²/30 days)	Pine Street DF (g/m²/30 days)	Walnut Street DF (g/m²/30 days)
Jul 2 – Jul 30	7.3	7.6	11.2
Jul 30 - Aug 29	4.6	6.6	7.0
Aug 29 – Sep 30	6.1	5.8	5.6
Average	6.0	6.7	7.9
Maximum	7.3	7.6	11.2
Montana Standard ⁵		10	

Chemical analysis results for the Dustfall samples are presented in Section 5.0.

⁵ ARM 17.8.220

4.0 CHEMICAL ANALYSIS DATA – TSP SAMPLES

Following gravimetric analysis, the particulate samples were submitted to Energy Laboratories, Inc. (ELI) in Billings, Montana, for elemental analysis including arsenic, cadmium, copper, lead, manganese, molybdenum and zinc. This analyte list may be subject to modification as results from this monitoring are obtained, and as other information becomes available.

All TSP samples were digested and then analyzed by ICP-MS using EPA Method E200.8. Laboratory results are presented in Appendix B and are reported in units of micrograms (μ g) per filter. Sixteen TSP samples collected from both the Walnut Street and Pine Street sites during the third quarter were analyzed for trace elements, as well as four Field Blanks and four filter lot blanks (Lab Blanks).

Tables 3a and 3b summarize the total particulate mass and ELI analytical results for samples collected during the third quarter. Detectable results were usually obtained for copper, lead, manganese, molybdenum, lead and zinc. Results for arsenic and cadmium were usually non-detectable. Table 3c shows the Field Blank and Lab Blank results associated with the third quarter samples. The bottom row of Table 3c shows the range of laboratory Method Blank (MB) Method Detection Limits (MDL) during the quarter. Field Blank, Lab (filter) Blank and MB concentrations for the third quarter were non-detectable, with the following exceptions:

- Low levels of copper and molybdenum were detected in one field blank.
- Low levels of molybdenum and zinc were detected in one analytical blank (each).

All of these blank detections were minor compared to their respective concentrations in the sample filters, and do not warrant any blank adjustments to the analytical results.

Tables 4a and 4b show the calculated airborne concentration of each trace element over the indicated sampling periods. To facilitate data interpretation, the number of leading zeroes in the results has been minimized by expressing results in units of *nanograms* (ng) per cubic meter rather than micrograms. As discussed in Section 2.0, it is suspected that the samples collected on May 18 were impacted by windblown dust outside of the sampling period. Those results are reported in Tables 4a and 4b but are not included in the statistical analyses.

All quarterly average trace element concentrations at Pine Street were below the respective lifetime exposure Guideline values. The closest approach was for manganese, with the average of 23 ng/m³ representing 46 percent of the Guideline value. Individual trace element concentrations for the Pine Street site were also below suggested Guideline values. The closest approach was for manganese on July 29; the concentration of 46 ng/m³ represented 92 percent of the lifetime exposure Guideline value of 15 ng/m³. This sample was impacted by regional wildfire smoke.

All quarterly average trace element concentrations at Walnut Street were also below the respective Guideline values. The closest approach was for manganese, with the average of

21 ng/m³ representing 42 percent of the Guideline value. Individual trace element concentrations for the Walnut Street site were generally below suggested Guideline values with the following exception:

• The manganese result of 55 ng/m³ on August 4 represented 110% of the lifetime exposure Guideline. This sample was also impacted by regional wildfire smoke.

Table 5 shows the sources of the "Guideline" values used for these analyses, and their derivations.⁶ Additionally, Table 5 shows the approximate airborne concentration corresponding to each MDL range listed in Table 4c.

Laboratory results are included in Appendix B. A detailed table showing commonly accepted values from regulatory agencies and reputable private organizations is provided in Appendix D.

_

⁶ The guideline values were updated (starting with the Greeley School 4th quarter report 2020) to be consistent with those from the Montana Department of Public Health and Human Services (MDPHHS). Guidelines for copper and molybdenum are lower than those used in previous quarterly reports. Although MDPHHS suggested a higher guideline for manganese, the lower previously reported value was retained. Guidelines for arsenic, cadmium, lead and zinc are unchanged.

Table 3a: Summary of Analytical Results - TSP Pine Street

	PART MASS	As	Cd	Cu	Mn	Мо	Pb	Zn
DATE	(µg)	(µg)	(µg)	(µg)	(µg)	(µg)	(µg)	(μg)
07/05	1142	ND	ND	4.3	0.34	1.4	0.15	1.2
07/11	1490	ND	0.0077	6.6	0.64	0.31	0.33	1.8
07/17	1359	ND	ND	4.6	0.51	0.26	0.25	1.3
07/23	1483	ND	0.0076	6.8	0.55	0.39	0.36	1.9
07/29	2233	ND	ND	3.0	1.1	0.23	0.25	1.2
08/04	1715	ND	ND	3.8	0.94	0.13	0.16	1.1
08/10	1042	ND	ND	1.5	0.50	0.24	0.11	0.74
08/16	1144	ND	ND	1.9	0.58	0.14	0.15	0.93
08/22	1082	0.068	ND	1.4	0.47	0.094	0.10	0.79
08/28	555	0.065	ND	3.1	0.27	0.23	0.15	0.98
09/03	925	0.073	ND	2.6	0.32	0.15	0.098	0.64
09/09	2165	0.088	0.013	2.1	1.1	0.27	0.13	1.3
09/15	939	ND	ND	1.4	0.36	0.15	0.062	0.69
09/21	603	ND	ND	0.80	0.26	0.13	0.046	0.46
09/27	832	ND	ND	1.9	0.42	0.39	0.12	0.74

All values expressed as micrograms per filter. ND denotes not detected.

Table 3b: Summary of Analytical Results - TSP Walnut Street

	PART MASS	As	Cd	Cu	Mn	Мо	Pb	Zn
DATE	(µg)	(µg)	(µg)	(µg)	(μg)	(µg)	(µg)	(μg)
07/05	1067	ND	ND	1.7	0.41	0.055	0.11	0.53
07/11	1461	ND	0.0048	1.7	0.59	0.098	0.17	ND
07/17	1252	ND	ND	1.2	0.51	0.057	0.13	0.64
07/23	1125	ND	ND	0.73	0.33	0.058	0.13	0.51
07/29	1962	ND	ND	1.8	0.88	0.10	0.16	1.0
08/04	2234	ND	ND	2.3	1.3	0.083	0.18	1.4
08/10	988	ND	ND	1.3	0.39	0.056	0.087	0.63
08/16	1230	ND	ND	0.79	0.38	0.015	0.085	0.61
08/22	821	0.064	ND	0.60	0.35	0.055	0.069	0.48
08/28	501	0.062	ND	0.33	0.26	0.045	0.23	0.32
09/03	812	0.078	ND	0.81	0.35	0.11	0.088	0.75
09/09	2141	0.078	0.0069	0.70	0.65	0.026	0.063	0.63
09/15	719	ND	ND	0.93	0.34	0.054	0.061	0.49
09/21	703	ND	ND	0.30	0.26	0.020	ND	0.35
09/27	651	ND	ND	0.80	0.41	0.40	0.12	0.75

All values expressed as micrograms per filter. ND denotes not detected.

Table 3c: Summary of Analytical Results - Blanks

	PART MASS	As	Cd	Cu	Mn	Мо	Pb	Zn
DATE	(µg)	(µg)	(µg)	(µg)	(µg)	(µg)	(µg)	(µg)
08/20-LB	2	ND	ND	ND	ND	ND	ND	ND
07/12-FFB	87	ND	ND	0.18	ND	0.070	ND	ND
10/02-LB	3	ND	ND	ND	ND	ND	ND	0.31
08/20-FFB	14	ND	ND	ND	ND	ND	ND	ND
10/04-LB	2	ND	ND	ND	ND	ND	ND	ND
09/09-LB	60	ND	ND	ND	ND	0.016	ND	ND
09/25-FFB	INV	INV	INV	INV	INV	INV	INV	INV
11/11-LB	0	ND	ND	ND	ND	ND	ND	ND
Lab Method Blank MD	L Range	0.06	0.004- 0.006	0.2	0.2	0.005- 0.006	0.04	0.3

All values expressed as micrograms per filter. ND denotes not detected. LB denotes laboratory filter blank. FFB denotes field filter blank. INV denotes invalid results, filter was torn attempting to pass leak test.

Table 4a: Summary of Airborne Trace Element Concentrations - TSP Pine Street

	Sample Volume	As	Cd	Cu	Mn	Mo	Pb	Zn
DATE	(m ³)	(ng/m ³)	(ng/m³)	(ng/m³)	(ng/m ³)	(ng/m³)	(ng/m ³)	(ng/m ³)
07/05	24.05	ND	ND	180	14	58	6.2	50
07/11	24.05	ND	0.32	270	27	13	14	75
07/17	24.05	ND	ND	190	21	11	10	54
07/23	24.05	ND	0.32	280	23	16	15	79
07/29	24.05	ND	ND	120	46	9.6	10	50
08/04	24.05	ND	ND	160	39	5.4	6.7	46
08/10	24.05	ND	ND	62	21	10	4.6	31
08/16	24.05	ND	ND	79	24	5.8	6.2	39
08/22	24.05	2.8	ND	58	20	3.9	4.2	33
08/28	24.05	2.7	ND	130	11	10	6.2	41
09/03	24.05	3.0	ND	110	13	6.2	4.1	27
09/09	24.05	3.7	0.54	87	46	11	5.4	54
09/15	24.05	ND	ND	58	15	6.2	2.6	29
09/21	24.05	ND	ND	33	11	5.4	1.9	19
09/27	24.05	ND	ND	79	17	16	5.0	31
Mean (ng	/m³) *	1.7	0.17	126	23	13	6.8	44
Guideline (n	ıg/m³) **	15	10	2,000	50	400	150	47,619

^{*}Rather than treat non detectable (ND) data as zero, the mean was calculated using ½ of the detectable value (Table 5) for the parameter and date in question.

^{**}The guideline values, except lead (Pb), are applicable to a lifetime or chronic exposure. The lead (Pb) guideline is an ambient air quality standard applicable to a 3-month average. The quarterly average lead concentration of 6.8 ng/m^3 was 5 percent of the guideline value; non-detect lead concentrations were set at $\frac{1}{2}$ of the lead detection limit for the sample group in question.

Table 4b: Summary of Airborne Trace Element Concentrations - TSP Walnut Street

	Sample Volume	As	Cd	Cu	Mn	Мо	Pb	Zn
DATE	(m ³)	(ng/m ³)	(ng/m ³)	(ng/m ³)	(ng/m ³)	(ng/m^3)	(ng/m ³)	(ng/m^3)
07/05	23.71	ND	ND	72	17	2.3	4.6	22
07/11	23.71	ND	0.20	72	25	4.1	7.2	ND
07/17	23.71	ND	ND	51	22	2.4	5.5	27
07/23	23.71	ND	ND	31	14	2.4	5.5	22
07/29	23.71	ND	ND	76	37	4.2	6.7	42
08/04	23.71	ND	ND	97	55	3.5	7.6	59
08/10	23.71	ND	ND	55	16	2.4	3.7	27
08/16	23.71	ND	ND	33	16	0.63	3.6	26
08/22	23.71	2.7	ND	25	15	2.3	2.9	20
08/28	23.71	2.6	ND	14	11	1.9	9.7	13
09/03	23.71	3.3	ND	34	15	4.6	3.7	32
09/09	23.71	3.3	0.29	30	27	1.1	2.7	27
09/15	23.71	ND	ND	39	14	2.3	2.6	21
09/21	23.71	ND	ND	13	11	0.84	ND	15
09/27	23.71	ND	ND	34	17	17	5.1	32
	•							
Mean (ng	g/m³) *	1.7	0.13	45	21	3.5	4.8	26
Guideline (1	ng/m³) **	15	10	2,000	50	400	150	47,619

^{*}Rather than treat non detectable (ND) data as zero, the mean was calculated using ½ of the detectable value (Table 5) for the parameter and date in question.

^{**}The guideline values, except lead (Pb), are applicable to a lifetime or chronic exposure. The lead (Pb) guideline is an ambient air quality standard applicable to a 3-month average. The quarterly average lead concentration of $4.8~\text{ng/m}^3$ was 3 percent of the guideline value; non-detect lead concentrations were set at $\frac{1}{2}$ 0 of the lead detection limit for the sample group in question.

Table 5: Summary of Airborne Trace Element Concentration Guidelines (ng/m³)

Analyte	Dose/ Risk ^A	Source	Description	Time Period	Detectable TSP ^D
Arsenic (inorganic)	15	EPA / DPHHS ^F	RfC ^B	Lifetime	2.50
Cadmium	10	ATSDR / DPHHS ^F	Non-cancer / CV ^F	Chronic	0.17.0.25
Cadmium	200	IRIS	Cancer	Chronic	0.17-0.25
Copper	2,000	DPHHS ^F / Michigan DEQ	RfC ^B	Chronic	8.33
Lead	150	EPA / ATSDR / DPHHS ^F	National Ambient Air Quality Standard ^c	3-month	1.67
Manganese	50	EPA	RfC ^B	Lifetime	8.33
Malyhdanum	11,905 (=500,000/42) ^E	CAL/OSHA, ACGIH	CAL/OSHA, ACGIH	Chronic ^E	0.21-0.25
Molybdenum	400	DPHHS ^F / Michigan DEQ	CV	Chronic	0.21-0.25
Zinc	47,619 (=2,000,000/42) ^E	ACGIH TLV	ACGIH TLV	Chronic ^E	12.5

^A See Appendix D for definitions and listing of dose and risk assessment values reviewed to produce this summary table.

EPA = Environmental Protection Agency

ATSDR = Agency for Toxic Substances & Disease Registry

CV = "Comparison Value" – a term used by DPHHS (10/28/20 letter) to indicate an ATSDR (or other) guideline or reference value

DPHHS = Montana Department of Health and Human Services

RfC = Reference Concentration (see above)

RSL = EPA Regional Screening Levels (https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables)

OSHA = Occupational Safety and Health Administration

ACGIH = American Congress of Governmental Industrial Hygienists

NIOSH= National Institute of Occupational Safety and Health

TLV = Threshold limit value

^B RfC = Reference Concentration (EPA) is an estimate (with uncertainty added) of a continuous inhalation exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime.

^C This standard is based on a three-month average.

^D Based on 24-hour sampling period and total sample volume of 24 m³. Range reflects maximum and minimum laboratory MDLs during Q3 2024.

E This value derived by dividing the OSHA/NIOSH exposure limit by 42. This was done to include a factor of 10 to account for a general population, not just healthy adults and then including another factor of 4.2 to include a year-long exposure as opposed to 8 hours per day, 5 days a week and 52 weeks per year.

F Reference information from letter and analysis by DPHHS (regarding Greeley School ambient data) to Butte-Silver Bow Health Department dated October 28,2020.

5.0 CHEMICAL ANALYSIS DATA – DUSTFALL SAMPLES

After each Dustfall sample was prepared as described in Section 3.0, the remaining particulate mass was transferred to a digestion vessel using digestion reagents to ensure that all dust was removed from the plastic and digested for total metals analysis. The digestate was analyzed using EPA Method SW6020 "Inductively Coupled Plasma - Mass Spectrometry."

Laboratory results are presented in Appendix C and are reported in units of milligrams per kilogram (mg/kg) in the captured particulate, along with the total dried particulate mass. Six Dustfall samples collected from the Walnut Street, Pine Street and Greeley School sites during the third quarter of 2024 were analyzed for trace elements. Three Field Blanks also were analyzed.

Tables 6a through 6c present the Dustfall analysis data for the third quarter. Each Table shows the sample collection information, amount of particulate captured from each sample, and the concentrations of seven parameters in the particulate mass on a mg/kg basis. Finally, each table shows a calculated deposition rate for each parameter in units of milligrams per square meter per 30-days ($g/m^2/30$ -days).

With one exception, the 30-day total particulate deposition rates were below the MAAQS of $10 \text{ g/m}^2/30$ -days.⁷ The highest observed deposition rate of $11.6 \text{ g/m}^2/30$ -days occurred at the Pine Street site between July 2 and July 30, 2024. Quarterly average deposition rates were below the MAAQS at all three sites.

-

⁷ It should be noted that the sampling procedure and analysis were conducted with quality in mind, they were not necessarily conducted in strict accordance with the specific methods outlined in the Montana standard (ARM17.8.220).

Table 6a: Dustfall Results for July 2 - July 30, 2024

Sample Collection Information

	Greeley School	Pine Street	Walnut Street	Field Blank
Start Date	07/02/24	07/02/24	07/02/24	
End Date	07/30/24	07/30/24	07/30/24	
Days of Exposure	28	28	28	
Dry Particulate Weight (g)	0.1202	0.1254	0.1846	0.0000
Dustfall (g/m²/30-days)	7.3	7.6	11.2	0.0

Trace Element Concentration in Particulate (mg/kg)

Analyte	Greeley School	Pine Street	Walnut Street	Field Blank
As	31	34	27	ND
Cd	2	3	2	ND
Cu	2,380	4,000	1,420	0.5
Pb	129	132	90	ND
Mn	581	569	511	0.4
Mo	2,990	3,900	722	0.2
Zn	543	724	413	ND

Trace Element Deposition Rate (mg/m²/30-days)

Analyte	Greeley School	Pine Street	Walnut Street	Field Blank
As	0.23	0.26	0.30	ND
Cd	0.01	0.02	0.02	ND
Cu	17.35	30.41	15.89	0.00
Pb	0.94	1.00	1.01	ND
Mn	4.23	4.33	5.72	0.00
Мо	21.79	29.65	8.08	0.00
Zn	3.96	5.50	4.62	ND

Table 6b: Dustfall Results for July 30 - August 29, 2024

Sample Collection Information

	Greeley School	Pine Street	Walnut Street	Field Blank
Start Date	07/30/24	07/30/24	07/30/24	
End Date	08/29/24	08/29/24	08/29/24	
Days of Exposure	30	30	30	
Dry Particulate Weight (g)	0.0817	0.1161	0.1235	-0.0160
Dustfall (g/m²/30-days)	4.6	6.6	7.0	-0.9

Trace Element Concentration in Particulate (mg/kg)

Analyte	Greeley School	Pine Street	Walnut Street	Field Blank
As	66	59	41	ND
Cd	8	7	5	ND
Cu	6,000	6,420	3,870	0.6
Pb	297	284	240	ND
Mn	2,160	1,700	1,630	ND
Мо	8,010	5,600	2,400	ND
Zn	1,630	1,610	1,290	ND

Trace Element Deposition Rate (mg/m²/30-days)

Analyte	Greeley School	Pine Street	Walnut Street	Field Blank
As	0.31	0.39	0.29	ND
Cd	0.04	0.05	0.03	ND
Cu	27.74	42.18	27.05	0.00
Pb	1.37	1.87	1.68	ND
Mn	9.99	11.17	11.39	ND
Мо	37.03	36.79	16.77	ND
Zn	7.54	10.58	9.02	ND

Table 6c: Dustfall Results for August 29 - September 30, 2024

Sample Collection Information

	Greeley School	Pine Street	Walnut Street	Field Blank
Start Date	08/29/24	08/29/24	08/29/24	
End Date	09/30/24	09/30/24	09/30/24	
Days of Exposure	32	32	32	
Dry Particulate Weight (g)	0.1154	0.1094	0.1054	0.0032
Dustfall (g/m²/30-days)	6.1	5.8	5.6	0.2

Trace Element Concentration in Particulate (mg/kg)

Analyte	Greeley School	Pine Street	Walnut Street	Field Blank
As	21	27	16	ND
Cd	2	3	1	ND
Cu	1,460	3,330	1,200	ND
Pb	88	110	71	ND
Mn	684	656	613	ND
Mo	3,460	4,780	959	ND
Zn	435	606	402	ND

Trace Element Deposition Rate (mg/m²/30-days)

Analyte	Greeley School	Pine Street	Walnut Street	Field Blank
As	0.13	0.16	0.09	ND
Cd	0.01	0.02	0.01	ND
Cu	8.94	19.33	6.71	ND
Pb	0.54	0.64	0.40	ND
Mn	4.19	3.81	3.43	ND
Мо	21.18	27.74	5.36	ND
Zn	2.66	3.52	2.25	ND

6.0 CALIBRATION DATA

Calibration checks of the BGI TSP samplers are performed in at least two months of each quarter. In the third month, an audit is performed by a different person using different calibration standards. Routine monthly verification checks were performed on the TSP samplers on July 18, August 20 and September 30.8

Table 7 summarizes the verification checks performed each month and the applicable acceptance criteria. In the event of unsatisfactory results, corrective actions are performed as specified in the rightmost column. Table 8 summarizes the results of the calibration checks performed during the third quarter, as well as any corrective actions. Detailed verification check results are shown in Appendix E. Appendix F presents certifications for flow calibration standards used during the quarter.

Table 7: Summary of Montana Resources – Pine St and Walnut St Sites Calibration/ Audit Activities and Acceptance Criteria

Activity	Acceptance Criteria / Actions		
TSP Sampler Calibration			
Checks			
Flow Verification	±4%	Multipoint recalibration if flow error exceeds ±4%	
Leak Check	Investigate / minutes	correct if vacuum drop exceeds 4 cm of water in 2	
Temperature Verification	±2.0°C	Multipoint recalibration if error exceeds ±2.0°C	
Pressure	±10 mmHg	Adjust calibration if error exceeds ±10 mmHg	
Other			
TSP Inlet Head	Disassemble	and clean	

0

⁸ The calibration checks performed on October 11, 2024, also are shown to demonstrate data validity through the end of the quarter.

Table 8: Summary of Quarter 3, 2024 Calibration Verification Results

Date	Calibration Check	Results	Limits	Actions
07/18/2024	BGI TSP Flow Verification (A)	-1.0%	±4%	
Pine Street	BGI TSP Flow Verification (B)	+1.0%	±4%	
	BGI Ambient Temperature	-0.8°C	±2.0°C	
	BGI Filter Temperature	+0.7°C	±2.0°C	
	BGI Ambient Pressure	+0.1 mm Hg	±10 mmHg	
	BGI Leak Test (pressure drop)	0 cm H ₂ O	≤4 cm H ₂ 0	
07/18/2024	BGI TSP Flow Verification (A)	-1.2%	±4%	
Walnut Street	BGI TSP Flow Verification (B)	+1.3%	±4%	
	BGI Ambient Temperature	-1.2°C	±2.0°C	
	BGI Filter Temperature	+0.4°C	±2.0°C	
	BGI Ambient Pressure	+1.1 mm Hg	±10 mmHg	
	BGI Leak Test (pressure drop)	1 cm H ₂ O	≤4 cm H ₂ 0	
08/20/2024	BGI TSP Flow Verification (A)	-0.7%	±4%	
Pine Street	BGI TSP Flow Verification (B)	+0.7%	±4%	
	BGI Ambient Temperature	-0.6°C	±2.0°C	
	BGI Filter Temperature	+0.5°C	±2.0°C	
	BGI Ambient Pressure	+0.1 mm Hg	±10 mmHg	
	BGI Leak Test (pressure drop)	1 cm H ₂ O	≤4 cm H ₂ 0	
08/20/2024	BGI TSP Flow Verification (A)	-0.5%	±4%	
Walnut Street	BGI TSP Flow Verification (B)	+0.5%	±4%	
	BGI Ambient Temperature	-1.3°C	±2.0°C	
	BGI Filter Temperature	-0.6°C	±2.0°C	
	BGI Ambient Pressure	+1.1 mm Hg	±10 mmHg	
	BGI Leak Test (pressure drop)	1 cm H ₂ O	≤4 cm H ₂ 0	
09/30/2024	BGI TSP Flow Verification (A)	+2.5%	±4%	С
Pine Street	BGI TSP Flow Verification (B)	-2.4%	±4%	С
	BGI Ambient Temperature	-0.1°C	±2.0°C	
	BGI Filter Temperature	-1.0°C	±2.0°C	
	BGI Ambient Pressure	+0.6 mm Hg	±10 mmHg	
	BGI Leak Test (pressure drop)	0 cm H ₂ O	≤4 cm H ₂ 0	
09/30/2024	BGI TSP Flow Verification (A)	+0.9%	±4%	
Walnut Street	BGI TSP Flow Verification (B)	-0.9%	±4%	
	BGI Ambient Temperature	-0.4°C	±2.0°C	
	BGI Filter Temperature	+0.3°C	±2.0°C	
	BGI Ambient Pressure	+0.6 mm Hg	±10 mmHg	
	BGI Leak Test (pressure drop)	1 cm H ₂ O	≤4 cm H ₂ 0	
10/11/2024	BGI TSP Flow Verification (A)	-1.7%	±4%	
Pine Street	BGI TSP Flow Verification (B)	+1.7%	±4%	
	BGI Ambient Temperature	-0.6°C	±2.0°C	
	BGI Filter Temperature	+0.8°C	±2.0°C	
	BGI Ambient Pressure	+0.1 mm Hg	±10 mmHg	
	BGI Leak Test (pressure drop)	$0 \text{ cm H}_2\text{O}$	≤4 cm H ₂ 0	

Date	Calibration Check	Results	Limits	Actions
10/11/2024	BGI TSP Flow Verification (A)	+0.3%	±4%	
Walnut Street	BGI TSP Flow Verification (B)	-0.3%	±4%	
	BGI Ambient Temperature	-0.6°C	±2.0°C	
	BGI Filter Temperature	+0.4°C	±2.0°C	
	BGI Ambient Pressure	+1.6 mm Hg	±10 mmHg	
	BGI Leak Test (pressure drop)	2 cm H ₂ O	≤4 cm H ₂ 0	

Codes:

- A = Difference of reported flow from reference standard flow.
 B = Difference of reference standard flow from design flow of 16.7 LPM.
 C = Performed multipoint flow calibration following performance audit. New operating flow at 16.67 LPM.

7.0 QUARTERLY AUDIT/CALIBRATION RESULTS

An audit is performed once in each full calendar quarter. The checks and acceptance criteria are identical to those for monthly calibrations (see Table 7). The primary difference is that the audits are performed by a different person, using different calibration standards. Calibration adjustments then are made as necessary, based on the as-found audit results. The third quarter audit was performed on September 30, 2024, at both sites. Results for both samplers were satisfactory as shown in Table 9. However, a multipoint flow calibration was performed on the Pine Street sampler following the audit.

Table 9: Quarter 3, 2024 Audit Results

BGI PQ200 PM10 / TSP Sampler - Performance Audit				
Date: 09/30/2024	Time: 1516-1528	Sampler Serial Number: 90133 (Pine)		
Performed By: Daniel Bitz	Z	Observer: Steve Heck		
Ref Standard: Swift 25.0 S	SN D16202	Certification Date: 07/1	5/2024	
Barometric Pressure Sensor Verification				
Reading (mm Hg) Ambient Pressure	Sampler (a) 630	Audit (b) 839.9 mb = 630.0 mm	Difference $(a - b)$ $(must be \le \pm 10)$ 0.0	
	Temperature Ser	nsor Verification		
Reading (degrees Celsius)	Sampler (a)	Audit (b)	Difference (a - b) (must be ≤ ± 2ºC)	
Ambient Temperature	13.9 C	14.1 C	-0.2	
Filter Temperature	17.0 C	16.7 C	+0.3	
	Leak (Check		
Vacuum Readings (cm H2O)	Start 140	End 140	Pass Fail	
	Flow Rate V	erification		
Reading (liters per minute)	Sampler (a)	Audit (b)	% Difference 100*(a - b)/b (must be $\leq \pm 4\%$)	
Operating flow rate check	16.7	16.12	+3.6%	
Reading (liters per minute)	Audit (b)	Design Flow Rate Standard (c)	% Difference 100*(b-16.7)/16.7 (must be $\leq \pm 5\%$)	
Design flow rate calculation	16.12	16.7	-3.5%	

Comments: Performed multipoint flow calibration after audit.

Swift 25.0 flow read 13.90 SLPM - converted to 16.12 ALPM

BGI PQ200 PM10 / TSP Sampler - Performance Audit				
Date: 09/30/2024	Time: 1610-1625	Sampler Serial Number: 90129 Walnut		
Performed By: Daniel Bitz	Z	Observer: Steve Heck		
Ref Std: Swift 25.0 SN D10	6202	Certification Date: 07/1	5/2024	
Barometric Pressure Sensor Verification				
Reading (mm Hg) Ambient Pressure	Sampler (a) 631	Audit (b) 841.0 mb = 630.8 mm	Difference $(a - b)$ $(must be \le \pm 10)$ $+0.2$	
Temperature Sensor Verification				
Reading (degrees Celsius)	Sampler (a)	Audit (b)	Difference (a - b) (must be ≤ ± 2ºC)	
Ambient Temperature	13.9 C	14.3 C	-0.4	
Filter Temperature	15.9 C	15.2 C	+0.7	
	Leak (Check		
Vacuum Readings (cm H20)	Start 138	End 137	Pass Fail	
	Flow Rate V	erification		
Reading (liters per minute)	Sampler (a)	Audit (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)	
Operating flow rate check	16.7	16.37	+2.0%	
Reading (liters per minute)	Audit (b)	Design Flow Rate Standard (c)	% Difference 100*(b-16.7)/16.7 (must be ≤ ± 5%)	
Design flow rate calculation	16.37	16.7	-2.0%	

Swift flow read 14.12 SLPM – converted to 16.37 SLPM

8.0 DATA COMPLETENESS

Data recovery statistics for the particulate filter samples are presented in Table 10. The typical quarterly data recovery goal for TSP filter samples is ≥80 percent for both the gravimetric and trace element analyses. The actual data recovery was 100 percent for the TSP gravimetric and trace element analyses at both the Pine St and Walnut St sites.

Dustfall sampling involves no active instrumentation; it merely requires exposure of a 15-cm diameter open container for a period of approximately 30-days. It would therefore be highly unusual for any scheduled sample to not be collected and analyzed. Three rounds of \sim 30-day sampling at the Greeley School, Pine Street and Walnut Street sites were possible during the third quarter of 2024 – for a total of nine possible samples. All nine samples were collected as scheduled, giving a data recovery of 100 percent.

Table 10: Quarterly Data Completeness Summary - Filter Analysis Data

Montana Resources LLP								
	Readings	Valid	Percent					
Parameter	Possible	Results	Recovery					
	July 2024							
TSP – Pine St / Gravimetric	5	5	100.0					
TSP – Pine St / Trace Elements	35	35	100.0					
TSP - Walnut St / Gravimetric	5	5	100.0					
TSP – Walnut St / Trace Elements	35	35	100.0					
Total	80	80	100.0					
	August 202	4						
TSP – Pine St / Gravimetric	5	5	100.0					
TSP – Pine St / Trace Elements	35	35	100.0					
TSP – Walnut St / Gravimetric	5	5	100.0					
TSP – Walnut St / Trace Elements	35	35	100.0					
Total	80	80	100.0					
	September 20							
TSP – Pine St / Gravimetric	5	5	100.0					
TSP – Pine St / Trace Elements	35	35	100.0					
TSP – Walnut St / Gravimetric	5	5	100.0					
TSP – Walnut St / Trace Elements	35	35	100.0					
Total	80	80	100.0					
	Quarter 3, 20							
TSP – Pine St / Gravimetric	15	15	100.0					
TSP – Pine St / Trace Elements	105	105	100.0					
TSP – Walnut St / Gravimetric	15	15	100.0					
TSP – Walnut St / Trace Elements	105	105	100.0					
Total	240	240	100.0					

9.0 COMPARISON TO AMBIENT AIR QUALITY STANDARDS

This study is not intended to determine compliance with the NAAQS 9 or the Montana ambient air quality standards 10 (MAAQS). Nonetheless, a generalized comparison is possible. The filter-based TSP data collected indicate ambient TSP concentrations well below the historical 24-hour standard of 260 μ g/m 3 and the historical annual geometric average standard of 75 μ g/m 3 . *Note that all TSP standards were superseded by PM*₁₀ *standards in* 1987.¹¹

Similarly, the lead concentrations analyzed from the exposed TSP filters indicate quarterly average airborne concentrations well below the 0.15 μ g/m³ ambient NAAQS based on a 3-month average of the 24-hour samples. The MAAQS is 1.5 μ g/m³ and is based on a 90-day rolling average of 24-hour samples. The TSP samples presented herein were collected for 24-hour periods, at a much lower sampling rate (16.7 liters per minute) compared to the standard method (≥40 standard cubic feet per minute). Nonetheless, the results indicate quarterly average ambient lead concentrations below the MAAQS and NAAQS. Table 11 summarizes these comparisons through the third quarter of 2024.

Additionally, the analyses presented in Section 4.0 indicate that average airborne concentrations of the other six trace elements were below the suggested guidelines presented in Table 5.

Finally, the MAAQS for Dustfall specifies a particulate deposition rate not to exceed $10 \text{ g/m}^2/30$ -days. One Dustfall sample collected during the third quarter slightly exceeded this value; the quarterly averages at all three sites were well below that value. There is no NAAQS for Dustfall.

^{9 40} CFR 50 et seq.

¹⁰ ARM 17.8.201 et. seq.

¹¹ 52 FR 24634, July 1, 1987

Table 11: Summary of Airborne Concentration vs. NAAQS

Analyte	Location	Observed Concentration (µg/m³)	Averaging Period	Ambient Standard (µg/m³)	Authority	
TSP	Pine St	931	24-hour	260^{3}	NAAQS	
134	Walnut St	941	(max)	2003		
TSP	Pine St	52	Annual	75 ³	NAAOC	
134	Walnut St	50	Average	/53	NAAQS	
Pine St		0.0072	90-day	1.50	MAAQS	
Pb	Walnut St	0.005 ² 3-month		0.15	NAAQS	
Analyte	Location	Max. Observed Deposition Rate (g/m²/30-days)	Averaging Period	Ambient Standard (g/m²/30-days)	Authority	
	Greeley Sch.	7.3				
Dustfall	Pine St	7.6	30-days	10	MAAQS	
	Walnut St	11.2				

 $^{^{\}rm 1}$ This value was the $\underline{\text{maximum}}$ 24-hour value from the filter-based TSP sampler.

² This value was the quarterly average from the filter-based TSP sampler. Non-detect results were set to ½ of the applicable detection limit when calculating the average.

³ The historical TSP standard shown for comparison purposes is no longer in effect. NAAQS standard for TSP was based on geometric mean and MAAQS on arithmetic average. Values shown represent arithmetic averages for monitoring period of Quarter 3, 2024, based on gravimetric filter analysis.

APPENDIX A: GRAVIMETRIC ANALYSIS DATA

Quarter 3, 2024 Filter Analysis Results - TSP - Pine St

			AVG FLOW		SAMPLE	PRE WEIGHT	PRE-WEIGHT	POST WEIGHT	POST-WEIGHT	PART MASS	CONC
FILTER	TYPE	DATE	LPM	HOURS	VOLUME (M3)	(MG)	DATE	(MG)	DATE	(MG)	(UG/M3)
C1812156	TSP	07/05	16.70	24:00	24.05	119.464	27-Jun	120.606	14-Aug	1.142	47.5
C1812159	TSP	07/11	16.70	24:00	24.05	118.601	27-Jun	120.091	14-Aug	1.490	62.0
C1812161	TSP	07/17	16.70	24:00	24.05	118.075	27-Jun	119.434	14-Aug	1.359	56.5
C1812164	TSP	07/23	16.70	24:00	24.05	121.516	27-Jun	122.999	14-Aug	1.483	61.7
C1812167	TSP	07/29	16.70	24:00	24.05	118.995	24-Jul	121.228	13-Sep	2.233	92.8
C1812169	TSP	08/04	16.70	24:00	24.05	120.335	24-Jul	122.050	13-Sep	1.715	71.3
C1812171	TSP	08/10	16.70	24:00	24.05	120.305	24-Jul	121.347	13-Sep	1.042	43.3
C1812173	TSP	08/16	16.70	24:00	24.05	119.582	24-Jul	120.726	13-Sep	1.144	47.6
C1812186	TSP	08/22	16.70	24:00	24.05	121.075	14-Aug	122.157	24-Sep	1.082	45.0
C1812188	TSP	08/28	16.70	24:00	24.05	115.850	14-Aug	116.405	24-Sep	0.555	23.1
C1812190	TSP	09/03	16.70	24:00	24.05	116.823	14-Aug	117.748	24-Sep	0.925	38.5
C1812193	TSP	09/09	16.70	24:00	24.05	116.250	14-Aug	118.415	24-Sep	2.165	90.0
C1103507	TSP	09/15	16.70	24:00	24.05	118.905	9-Sep	119.844	28-Oct	0.939	39.0
C1103506	TSP	09/21	16.70	24:00	24.05	118.426	9-Sep	119.029	28-Oct	0.603	25.1
C1103511	TSP	09/27	16.70	24:00	24.05	120.486	9-Sep	121.318	28-Oct	0.832	34.6

Quarter 3, 2024 Filter Analysis Results - TSP - Walnut St

			AVG FLOW		SAMPLE	PRE WEIGHT	PRE-WEIGHT	POST WEIGHT	POST-WEIGHT	PART MASS	CONC
FILTER	TYPE	DATE	LPM	HOURS	VOLUME (M3)	(MG)	DATE	(MG)	DATE	(MG)	(UG/M3)
C1812158	TSP	07/05	16.70	23:40	23.71	118.002	27-Jun	119.069	14-Aug	1.067	45.0
C1812160	TSP	07/11	16.70	23:40	23.71	117.143	27-Jun	118.604	14-Aug	1.461	61.6
C1812163	TSP	07/17	16.70	23:40	23.71	120.287	27-Jun	121.539	14-Aug	1.252	52.8
C1812165	TSP	07/23	16.70	23:40	23.71	118.916	27-Jun	120.041	14-Aug	1.125	47.4
C1812168	TSP	07/29	16.70	23:40	23.71	120.645	24-Jul	122.607	13-Sep	1.962	82.7
C1812170	TSP	08/04	16.70	23:40	23.71	121.634	24-Jul	123.868	13-Sep	2.234	94.2
C1812172	TSP	08/10	16.70	23:40	23.71	121.732	24-Jul	122.720	13-Sep	0.988	41.7
C1812174	TSP	08/16	16.70	23:40	23.71	120.267	24-Jul	121.497	13-Sep	1.230	51.9
C1812187	TSP	08/22	16.70	23:40	23.71	114.011	14-Aug	114.832	24-Sep	0.821	34.6
C1812189	TSP	08/28	16.70	23:40	23.71	117.725	14-Aug	118.226	24-Sep	0.501	21.1
C1812191	TSP	09/03	16.70	23:40	23.71	113.807	14-Aug	114.619	24-Sep	0.812	34.2
C1812194	TSP	09/09	16.70	23:40	23.71	117.499	14-Aug	119.640	24-Sep	2.141	90.3
C1103508	TSP	09/15	16.70	23:40	23.71	119.328	9-Sep	120.047	28-Oct	0.719	30.3
C1103509	TSP	09/21	16.70	23:40	23.71	120.891	9-Sep	121.594	28-Oct	0.703	29.6
C1103513	TSP	09/27	16.70	23:40	23.71	121.470	9-Sep	122.121	28-Oct	0.651	27.5

Quarter 3, 2024 Filter Analysis Results - Pine & Walnut - Blanks

			PRE WEIGHT	PRE-WEIGHT	POST WEIGHT	POST-WEIGHT	PART MASS
FILTER	TYPE	DATE*	(MG)	DATE	(MG)	DATE	(MG)
C1812157	Lab	20-Aug	116.739	27-Jun	116.741	14-Aug	0.002
C1812162	Field	12-Jul	119.613	27-Jun	119.700	14-Aug	0.087
C1812166	Lab	2-Oct	121.195	24-Jul	121.198	13-Sep	0.003
C1812175	Field	20-Aug	122.560	24-Jul	122.574	13-Sep	0.014
C1812192	Lab	4-Oct	116.711	14-Aug	116.713	24-Sep	0.002
C1812195	Field	9-Sep	116.585	14-Aug	116.645	24-Sep	0.060
C1103510	Field	25-Sep	121.408	9-Sep	121.533	28-Oct	0.125
C1103512	Lab	11-Nov	121.172	9-Sep	121.172	28-Oct	0.000

^{*}Denotes collection date for Field Blank, analysis date for Laboratory Blanks

Results invalid - filter severely damaged adjusting cartridge to pass leak test

APPENDIX B: LABORATORY ANALYSIS REPORTS - TSP

ANALYTICAL SUMMARY REPORT

August 27, 2024

Bison Engineering 3143 E Lyndale Ave Helena, MT 59601-6401

Work Order: B24081657 Quote ID: B4795
Project Name: Montana Resources/Greely School PW

Energy Laboratories Inc Billings MT received the following 10 samples for Bison Engineering on 8/15/2024 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
B24081657-001	Particulate Filter C1812156 TSP Pine St Composite	07/05/24 0:00	08/15/24	Air	Metals on air filter by ICP/ICPMS Nitric acid-extraction by 40CFR50G
B24081657-002	Particulate Filter C1812157 Lab Blank	06/27/24 15:10	08/15/24	Air	Same As Above
B24081657-003	Particulate Filter C1812158 TSP Walnut St Composite	07/05/24 0:00	08/15/24	Air	Same As Above
B24081657-004	Particulate Filter C1812159 TSP Pine St Composite	07/11/24 0:00	08/15/24	Air	Same As Above
B24081657-005	Particulate Filter C1812160 TSP Walnut St Composite	07/11/24 0:00	08/15/24	Air	Same As Above
B24081657-006	Particulate Filter C1812161 TSP Pine St	07/17/24 10:36	08/15/24	Air	Same As Above
B24081657-007	Particulate Filter C1812162 Field Blank Composite	07/12/24 0:00	08/15/24	Air	Same As Above
B24081657-008	Particulate Filter C1812163 TSP Walnut St Composite	07/17/24 0:00	08/15/24	Air	Same As Above
B24081657-009	Particulate Filter C1812164 TSP Pine St Composite	07/23/24 0:00	08/15/24	Air	Same As Above
B24081657-010	Particulate Filter C1812165 TSP Walnut St Composite	07/23/24 0:00	08/15/24	Air	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 So. 27th Street, Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

Energy Laboratories, Inc. verifies the reported results for the analysis has been technically reviewed and approved for release.

If you have any questions regarding these test results, please contact your Project Manager.

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

CLIENT: Bison Engineering

Project: Montana Resources/Greely School PW Report Date: 08/27/24

Work Order: B24081657 CASE NARRATIVE

Per client request, results are based on the final concentration using 25 mL of extraction solution per filter.

All "J" qualified analyte concentrations are below the laboratory minimum recommended Reporting Limit (RL) and above the lowest method detection limit (MDL)/Limit of Detection (LOD). Inorganic analytes reported with "J" qualifiers should be verified against the corresponding method blank and continuing calibration blanks. Inorganic "J" quantitations near the MDL/LOD may be suspect due to possible method background levels, sample matrix effects, and/or daily variability in instrument signal-to-noise levels.

Billings, MT 406.252.6325 . Casper, WY 307.235.0515 . Gillette, WY 307.686.7175 . Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

by Billings, MT Branch

Lab ID: B24081657-001

Collection Date: 07/05/24 DateReceived: 08/15/24

Report Date: 08/27/24

Client:	Bison Engineering	Prepared by
Client:	DISON ENGINEERING	

Montana Resources/Greely School PW Project:

Client Sample ID: Particulate Filter C1812156 TSP Pine St Composite

Matrix:

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	08/20/24 21:27 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_24082	OA: 49	192352
Cadmium	ND	ug/filter		1.0	0.0044	E200.8	08/21/24 23:37 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A: 312	192352
Copper	4.3	ug/filter		1.0	0.16	E200.8	08/20/24 21:27 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_24082	OA: 49	192352
Lead	0.15	ug/filter	J	1.0	0.042	E200.8	08/21/24 23:37 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A: 312	192352
Manganese	0.34	ug/filter	J	1.0	0.18	E200.8	08/21/24 23:37 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A: 312	192352
Molybdenum	1.4	ug/filter		1.0	0.0059	E200.8	08/20/24 21:27 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_24082	OA: 49	192352
Zinc	1.2	ug/filter		1.0	0.30	E200.8	08/20/24 21:27 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_24082	OA: 49	192352

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 • Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24081657-002 **Collection Date:** 06/27/24 15:10

DateReceived: 08/15/24 Report Date: 08/27/24

Client Sample ID: Particulate Filter C1812157 Lab Blank
Project: Montana Resources/Greely School PW

Bison Engineering

Matrix: Air

Client:

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	08/20/24 21:33 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 50	192352
Cadmium	ND	ug/filter		1.0	0.0044	E200.8	08/20/24 21:33 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 50	192352
Copper	ND	ug/filter		1.0	0.16	E200.8	08/20/24 21:33 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 50	192352
Lead	ND	ug/filter		1.0	0.042	E200.8	08/20/24 21:33 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 50	192352
Manganese	ND	ug/filter		1.0	0.18	E200.8	08/20/24 21:33 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 50	192352
Molybdenum	ND	ug/filter		1.0	0.0059	E200.8	08/21/24 23:43 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 313	192352
Zinc	ND	ug/filter		1.0	0.30	E200.8	08/20/24 21:33 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 50	192352

Bison Engineering

Client:

Project:

Matrix:

Billings, MT 406.252.6325 . Casper, WY 307.235.0515 . Gillette, WY 307.686.7175 . Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24081657-003

Client Sample ID: Particulate Filter C1812158 TSP Walnut St Composite Collection Date: 07/05/24 Montana Resources/Greely School PW DateReceived: 08/15/24

Report Date: 08/27/24

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	08/20/24 21:39 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_24082	OA : 51	192352
Cadmium	ND	ug/filter		1.0	0.0044	E200.8	08/20/24 21:39 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_24082	OA: 51	192352
Copper	1.7	ug/filter		1.0	0.16	E200.8	08/20/24 21:39 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_24082	OA: 51	192352
Lead	0.11	ug/filter	J	1.0	0.042	E200.8	08/21/24 23:49 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A: 314	192352
Manganese	0.41	ug/filter	J	1.0	0.18	E200.8	08/21/24 23:49 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A: 314	192352
Molybdenum	0.055	ug/filter	J	1.0	0.0059	E200.8	08/21/24 23:49 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A: 314	192352
Zinc	0.53	ug/filter	J	1.0	0.30	E200.8	08/21/24 23:49 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A: 314	192352

Billings, MT 406.252.6325 . Casper, WY 307.235.0515 . Gillette, WY 307.686.7175 . Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24081657-004

Collection Date: 07/11/24

DateReceived: 08/15/24

Report Date: 08/27/24

Client Sample ID: Particulate Filter C1812159 TSP Pine St Composite

Project: Montana Resources/Greely School PW

Bison Engineering

Matrix: Air

Client:

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	08/21/24 23:55 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 315	192352
Cadmium	0.0077	ug/filter	J	1.0	0.0044	E200.8	08/21/24 23:55 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 315	192352
Copper	6.6	ug/filter		1.0	0.16	E200.8	08/20/24 21:45 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 52	192352
Lead	0.33	ug/filter	J	1.0	0.042	E200.8	08/21/24 23:55 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 315	192352
Manganese	0.64	ug/filter	J	1.0	0.18	E200.8	08/21/24 23:55 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 315	192352
Molybdenum	0.31	ug/filter	J	1.0	0.0059	E200.8	08/21/24 23:55 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 315	192352
Zinc	1.8	ug/filter		1.0	0.30	E200.8	08/20/24 21:45 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	\: 52	192352

Bison Engineering

Client:

Project:

Billings, MT 406.252.6325 . Casper, WY 307.235.0515 . Gillette, WY 307.686.7175 . Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24081657-005

Client Sample ID: Particulate Filter C1812160 TSP Walnut St Composite Collection Date: 07/11/24 Montana Resources/Greely School PW DateReceived: 08/15/24

Matrix: **Report Date:** 08/27/24

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	08/20/24 21:51 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_24082	DA: 53	192352
Cadmium	0.0048	ug/filter	J	1.0	0.0044	E200.8	08/22/24 00:01 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 316	192352
Copper	1.7	ug/filter		1.0	0.16	E200.8	08/20/24 21:51 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_24082	OA: 53	192352
Lead	0.17	ug/filter	J	1.0	0.042	E200.8	08/22/24 00:01 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 316	192352
Manganese	0.59	ug/filter	J	1.0	0.25	E200.8	08/22/24 00:01 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 316	192352
Molybdenum	0.098	ug/filter	J	1.0	0.0059	E200.8	08/22/24 00:01 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 316	192352
Zinc	ND	ug/filter		1.0	0.79	E200.8	08/22/24 00:01 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 316	192352

Billings, MT 406.252.6325 . Casper, WY 307.235.0515 . Gillette, WY 307.686.7175 . Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24081657-006
Collection Date: 07/17/24 10:36
DateReceived: 08/15/24

Report Date: 08/27/24

Client: Prepared by

Client Sample ID: Particulate Filter C1812161 TSP Pine St Project: Montana Resources/Greely School PW

Matrix: Air

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	08/20/24 21:57 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 54	192352
Cadmium	ND	ug/filter		1.0	0.0044	E200.8	08/22/24 00:07 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 317	192352
Copper	4.6	ug/filter		1.0	0.16	E200.8	08/20/24 21:57 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 54	192352
Lead	0.25	ug/filter	J	1.0	0.042	E200.8	08/22/24 00:07 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 317	192352
Manganese	0.51	ug/filter	J	1.0	0.18	E200.8	08/22/24 00:07 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 317	192352
Molybdenum	0.26	ug/filter	J	1.0	0.0059	E200.8	08/22/24 00:07 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 317	192352
Zinc	1.3	ug/filter		1.0	0.30	E200.8	08/20/24 21:57 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 54	192352

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 • Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

gs, MT Branch

Lab ID: B24081657-007

Collection Date: 07/12/24 DateReceived: 08/15/24

Report Date: 08/27/24

0	ъ. г	Prepared by Billing
Client:	Bison Engineering	

Client Sample ID: Particulate Filter C1812162 Field Blank Composite Montana Resources/Greely School PW Project:

Matrix:

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	08/20/24 22:03 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820/	: 55	192352
Cadmium	ND	ug/filter		1.0	0.0044	E200.8	08/20/24 22:03 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820/	: 55	192352
Copper	0.18	ug/filter	J	1.0	0.16	E200.8	08/22/24 00:13 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 318	192352
Lead	ND	ug/filter		1.0	0.042	E200.8	08/20/24 22:03 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820/	: 55	192352
Manganese	ND	ug/filter		1.0	0.18	E200.8	08/20/24 22:03 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820/	: 55	192352
Molybdenum	0.070	ug/filter	J	1.0	0.0059	E200.8	08/22/24 00:13 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 318	192352
Zinc	ND	ug/filter		1.0	0.30	E200.8	08/20/24 22:03 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	x : 55	192352

Bison Engineering

Billings, MT 406.252.6325 . Casper, WY 307.235.0515 . Gillette, WY 307.686.7175 . Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24081657-008

Client Sample ID: Particulate Filter C1812163 TSP Walnut St Composite Collection Date: 07/17/24 Montana Resources/Greely School PW DateReceived: 08/15/24

Report Date: 08/27/24

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	08/20/24 22:21 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_24082	0A : 58	192352
Cadmium	ND	ug/filter		1.0	0.0044	E200.8	08/20/24 22:21 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_24082	0A : 58	192352
Copper	1.2	ug/filter		1.0	0.16	E200.8	08/20/24 22:21 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_24082	0A : 58	192352
Lead	0.13	ug/filter	J	1.0	0.042	E200.8	08/22/24 00:31 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 321	192352
Manganese	0.51	ug/filter	J	1.0	0.18	E200.8	08/22/24 00:31 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 321	192352
Molybdenum	0.057	ug/filter	J	1.0	0.0059	E200.8	08/22/24 00:31 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 321	192352
Zinc	0.64	ug/filter	J	1.0	0.30	E200.8	08/22/24 00:31 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A : 321	192352

Client:

Project:

Matrix:

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24081657-009

ction Date: 07/23/24 DateReceived: 08/15/24

Report Date: 08/27/24

Client:	Bison Engineering	•	-	
Client Sample ID:	Particulate Filter C1812164 TSP Pine St Composite			Collect
Project:	Montana Resources/Greely School PW			DateF

Matrix:

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	08/22/24 00:37 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A: 322	192352
Cadmium	0.0076	ug/filter	J	1.0	0.0044	E200.8	08/22/24 00:37 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A: 322	192352
Copper	6.8	ug/filter		1.0	0.16	E200.8	08/20/24 22:27 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_24082	A : 59	192352
Lead	0.36	ug/filter	J	1.0	0.042	E200.8	08/22/24 00:37 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A: 322	192352
Manganese	0.55	ug/filter	J	1.0	0.18	E200.8	08/22/24 00:37 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A: 322	192352
Molybdenum	0.39	ug/filter	J	1.0	0.0059	E200.8	08/22/24 00:37 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820	A: 322	192352
Zinc	1.9	ug/filter		1.0	0.30	E200.8	08/20/24 22:27 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_24082	A : 59	192352

MCL - Maximum Contaminant Level

Bison Engineering

Client:

Project:

Matrix:

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24081657-010

Client Sample ID: Particulate Filter C1812165 TSP Walnut St Composite Collection Date: 07/23/24 Montana Resources/Greely School PW DateReceived: 08/15/24

Report Date: 08/27/24

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	08/20/24 22:33 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	A: 60	192352
Cadmium	ND	ug/filter		1.0	0.0044	E200.8	08/20/24 22:33 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	A: 60	192352
Copper	0.73	ug/filter	J	1.0	0.16	E200.8	08/22/24 00:43 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 323	192352
Lead	0.13	ug/filter	J	1.0	0.042	E200.8	08/22/24 00:43 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 323	192352
Manganese	0.33	ug/filter	J	1.0	0.18	E200.8	08/22/24 00:43 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 323	192352
Molybdenum	0.058	ug/filter	J	1.0	0.0059	E200.8	08/22/24 00:43 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 323	192352
Zinc	0.51	ug/filter	J	1.0	0.30	E200.8	08/22/24 00:43 / jks	08/19/24 11:10	40CFR50	ICPMS208-B_240820A	: 323	192352

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Bison Engineering Work Order: B24081657 Report Date: 08/27/24

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method:	E200.8							Analytic	al Run: ICPMS208-B	_240820A
Lab ID:	QCS	7 Initi	al Calibration	on Verification	on Standard				08/20	/24 18:04
Arsenic			0.0503	mg/L	0.0050	101	90	110		
Cadmium			0.0250	mg/L	0.0010	100	90	110		
Copper			0.0512	mg/L	0.010	102	90	110		
Lead			0.0489	mg/L	0.0010	98	90	110		
Manganes	e		0.254	mg/L	0.0050	101	90	110		
Molybdenu	ım		0.0482	mg/L	0.0050	96	90	110		
Zinc			0.0520	mg/L	0.0050	104	90	110		
Lab ID:	CCV	7 Coi	ntinuing Cal	ibration Veri	fication Standa	rd			08/20	/24 20:57
Arsenic			0.0495	mg/L	0.0050	99	90	110		
Cadmium			0.0499	mg/L	0.0010	100	90	110		
Copper			0.0505	mg/L	0.010	101	90	110		
Lead			0.0492	mg/L	0.0010	98	90	110		
Manganes	e		0.0492	mg/L	0.0050	98	90	110		
Molybdenu	ım		0.0490	mg/L	0.0050	98	90	110		
Zinc			0.0511	mg/L	0.0050	102	90	110		
Lab ID:	CCV	7 Coi	ntinuing Cal	ibration Veri	fication Standa	rd			08/20	/24 22:09
Arsenic			0.0499	mg/L	0.0050	100	90	110		
Cadmium			0.0473	mg/L	0.0010	95	90	110		
Copper			0.0510	mg/L	0.010	102	90	110		
Lead			0.0474	mg/L	0.0010	95	90	110		
Manganes	e		0.0491	mg/L	0.0050	98	90	110		
Molybdenu			0.0465	mg/L	0.0050	93	90	110		
Zinc			0.0502	mg/L	0.0050	100	90	110		
Lab ID:	QCS	7 Initi	al Calibration	on Verificatio	on Standard				08/21	/24 16:21
Arsenic			0.0510	mg/L	0.0050	102	90	110		,
Cadmium			0.0253	mg/L	0.0010	101	90	110		
Copper			0.0520	mg/L	0.010	104	90	110		
Lead			0.0507	mg/L	0.0010	101	90	110		
Manganes	e		0.256	mg/L	0.0050	102	90	110		
Molybdenu			0.0493	mg/L	0.0050	99	90	110		
Zinc			0.0530	mg/L	0.0050	106	90	110		
Lab ID:	CCV	7 Coi	ntinuing Cal	ibration Veri	fication Standar	·d			08/21	/24 23:07
Arsenic		30.	0.0474	mg/L	0.0050	95	90	110	33/21	0.01
Cadmium			0.0485	mg/L	0.0010	97	90	110		
Copper			0.0487	mg/L	0.010	97	90	110		
Lead			0.0488	mg/L	0.0010	98	90	110		
Manganes	e		0.0468	mg/L	0.0050	94	90	110		
Molybdenu			0.0480	mg/L	0.0050	96	90	110		
Zinc			0.0493	mg/L	0.0050	99	90	110		
Lab ID:	CCV	7 Co.	ntinuing Cal	ibration Veri	fication Standa	rd			08/22	/24 00:19
Arsenic	- - -	. 301	0.0470	mg/L	0.0050	94	90	110	33/22	
Cadmium			0.0484	mg/L	0.0010	97	90	110		
Caurilluifi			0.0404	IIIg/L	0.0010	97	90	110		

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Bison Engineering Work Order: B24081657 Report Date: 08/27/24

Ciletit.	Dison Engineening				Work Order.	D2400	51037	ixepoi	. Date	. 00/21/24	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8							Analytica	Run: I	CPMS208-B	_240820A
Lab ID:	CCV	7 Co	ntinuing Cal	libration Ve	rification Standa	rd				08/22	/24 00:19
Copper			0.0483	mg/L	0.010	97	90	110			
Lead			0.0492	mg/L	0.0010	98	90	110			
Mangane	se		0.0459	mg/L	0.0050	92	90	110			
Molybder	num		0.0470	mg/L	0.0050	94	90	110			
Zinc			0.0492	mg/L	0.0050	98	90	110			
Method:	E200.8									Batc	h: 192352
Lab ID:	MB-192352	7 Me	thod Blank				Run: ICPM	S208-B_240820A		08/20	/24 19:51
Arsenic			ND	ug/filter	0.06						
Cadmium	1		ND	ug/filter	0.004						
Copper			ND	ug/filter	0.2						
Lead			ND	ug/filter	0.04						
Mangane	ese		ND	ug/filter	0.2						
Molybder	num		ND	ug/filter	0.006						
Zinc			ND	ug/filter	0.3						
Lab ID:	LCS-192352	7 Lat	ooratory Co	ntrol Sampl	e		Run: ICPM	S208-B_240820A		08/20	/24 19:57
Arsenic			101	ug/filter	1.0	101	85	115			
Cadmium	1		50.2	ug/filter	1.0	100	85	115			
Copper			106	ug/filter	5.0	106	85	115			
Lead			97.8	ug/filter	1.0	98	85	115			
Mangane	se		506	ug/filter	5.0	101	85	115			
Molybder			98.1	ug/filter	1.0	98	85	115			
Zinc			111	ug/filter	5.0	111	85	115			
Lab ID:	LCSD-192352	7 Lah	ooratory Co	ntrol Sampl	le Duplicate		Run: ICPM	S208-B_240820A		08/20	/24 20:03
Arsenic			105	ug/filter	1.0	105	85	115			
Cadmium	1		52.1	ug/filter	1.0	104	85	115			
Copper			108	ug/filter	5.0	108	85	115			
Lead			103	ug/filter	1.0	103	85	115			
Mangane	se		526	ug/filter	5.0	105	85	115			
Molybder			101	ug/filter	1.0	101	85	115			
Zinc			111	ug/filter	5.0	111	85	115			
Lab ID:	MB-192352	7 Me	thod Blank				Run: ICPM	S208-B_240820A		08/21	/24 22:19
Arsenic			ND	ug/filter	0.06						
Cadmium	1		ND	ug/filter	0.004						
Copper			ND	ug/filter	0.2						
Lead			ND	ug/filter	0.04						
Mangane	se		ND	ug/filter	0.2						
Molybder			ND	ug/filter	0.006						
Zinc			ND	ug/filter	0.3						
0			110	ag/intoi	0.0						

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Work Order Receipt Checklist

Bison Engineering

Login completed by: Gina McCartney

B24081657

Date Received: 8/15/2024

Reviewed by:	cindy		Rec	eived by: KLP
Reviewed Date:	8/22/2024		Carri	ier name: Hand Deliver
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present
Custody seals intact on all sh	nipping container(s)/cooler(s)?	Yes	No 🗌	Not Present ✓
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?		Yes ✓	No 🗌	
Chain of custody signed whe	n relinquished and received?	Yes ✓	No 🗌	
Chain of custody agrees with	sample labels?	Yes 🗸	No 🗌	
Samples in proper container/	bottle?	Yes √	No 🗌	
Sample containers intact?		Yes √	No 🗌	
Sufficient sample volume for	indicated test?	Yes √	No 🗌	
All samples received within h (Exclude analyses that are co such as pH, DO, Res Cl, Su	onsidered field parameters	Yes 🔽	No 🗌	
Temp Blank received in all sh	nipping container(s)/cooler(s)?	Yes √	No 🗌	Not Applicable
Container/Temp Blank tempe	erature:	2.9°C Blue Ice		
Containers requiring zero heabubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable ✓

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Trip Blanks and/or Blind Duplicate samples are assigned the earliest collection time for the associated requested analysis in order to evaluate the holding time unless specifically indicated.

Contact and Corrective Action Comments:

None

Chain of Custody & Analytical Request Record

of 1

Account Information (Billing information)	Report Information (if different than Account Information)	Comments
Company/Name Bison Engineering, Inc.	Company/Name Bison Engineering, Inc.	
Contact Shelley Argott-Brown	Contact Don Milmine	
Phone (406) 442-5768	Phone (406) 208-4833	Analyze per history
Mailing Address 3143 E Lyndale Avenue	Mailing Address 2751 Enterprise Avenue Suite 2	
City, State, Zip Helena MT, 59601	City, State, Zip Billings, MT 59102	
Email sbrown-argott@bison-eng.com	Email dmilmine@bison-eng.com	
Receive Invoice	Receive Report	
Purchase Order Quote Bottle Order MTR223018	Special Report/Formats: □ LEVEL IV □ NELAC □ EDD/EDT (contact laboratory) □ Other	
Project Information	Matrix Codes Analysis Requested	
Project Name, PWSID, Permit, etc. Momtana Resources/Greely School PW	A. Air	All turnaround times a standard unless marked

	All turnaround times are standard unless marked as	RUSH.		Charges and scheduling – See Instructions Page	e Bush ELI LAB ID		B2408/65	
uested			_	шпиәр	100	IIZ	×	×
Analysis Requested				əsəu	11.0		x	×
Analy					ad	θŢ	×	×
				J.	eddo	၁၁	×	×
				wn	imbi	³O	×	×
				0	inea	-	×	X
Matrix Codes	Air Air	Soils/ Solids	Vegetation	Other Drinking Water	—	(See Codes Above)	でを	ON TEFTO
Matrix	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ś	> 0	- M	Number of	Containers	1	-
	thool PW		oN 🗖 se	tion)	ction	Time	24 hr	1510
	s/Greely Sc		ıpliance ☐ Yŧ	RE SENDING	Collectio	Date	7/5/24	6/27/24
	Project Name, PWSID, Permit, etc. Momtana Resources/Greely School PW	Sampler Phone	EPA/State Compliance	sample type. ed) **CALL BEFO! e Submitted to EL	5		TSP Pine St	l ah Blank
Project Information	ermit, etc. Momta		Sample Origin State Montana	URANIUM MINING CLIENTS MUST Indicate sample type. INDIT Source or Byproduct Material In Source-Processed Over (Ground or Refined) ***CALL BEFORE SENDING I 11e.(2) Byproduct Material (Can ONLY be Submitted to ELI Casper Location)	Sample Identification	(Name, Location, Interval, etc.)	Particulate filter C1812156 TSP Pine St 7/5/24	2 Particulate filter C1812157 Lab Blank 6/27/24

1,59180						1					who were		Receipt Number (cash/check only)
624								-		Signature	Signature	J	ipt Number
											13/2		Rece
										Date/Time	Bate/Time 9		Amount
×	×	×	×	×	×	×	×	×	×				
×	×	×	×	×	×	×	×	×	×		bok		đ
×	×	×	×	×	×	×	×	×	×		ory (prin		Payment Type
×	×	×	×	×	×	×	×	×	×	(print)	by Laborat		Pavr
×	×	×	×	×	×	×	×	×	×	Received by (print	Received by Laboratory (print)		
×	×	×	×	×	×	×	×	×	×	, i	ď	USE ON	
×	×	x	×	×	×	×	×	×	×	Comine		ATORY	au lo
である。	of Teflo	filter filter	of the for	on teken	27 Tetlon	on redon	on Tetlon filter	on letton	ON SEE	Mil.		LABORATORY USE ONLY	Town Blank
-	-	-	-	-	-	-	-	-	-) L	are		H
24 hrs. to	15/0	24 25 Consolo	SWASTE	Smissife	1036	canoste	24th condisite	Composte	Composite	12 /7 Signature	Signa		Doopint Tomp
7/5/24	6/27/24		7/11/24	7/11/24		7/12/24	7/17/24	7/23/24	7/23/24	8/15/24 12	Date/Time		tootal
TSP Pine St	Lab Blank	ISP Walnut St	TSP Pine St	ISP Walnut St	TSP Pine St	2 Field Blank	SP Walnut St	TSP Pine ST	SP Walnut ST				1
Particulate filter C1812156 TSP Pine St 7/5/24	2 Particulate filter C1812157 Lab Blank 6/27/24	3 Particulate filter C1812158 TSP Walnut St 7/5/24	4 Particulate filter C1812159 TSP Pine St 7/11/24	5 Particulate filter C1812160 TSP Walnut St 7/11/24	6 Particulate filter C1812161 TSP Pine St 7/17/24	Particulate filter C1812162 Field Blank 7/12/24	8 Particulate filter C1812163 TSP Walnut St 7/17/24 20	9 Particulate filter C1812164 TSP Pine ST 7/23/24 23	10 Particulate filter C1812165 TSP Walnut ST 7/23/24	Custody Reinquished by print)	Relinquished by (print)		10/01/20
1 Particulate	2 Particulate	3 Particulate	4 Particulate	5 Particulate	6 Particulate	7 Particulate	8 Particulate	9 Particulate	10 Particulate	Custody	be signed		
-	-	-										_	_

Custody	Retinguished by print)	in o	3/15/24 12	Signatur	ignature (, Milmine	mine	Received by (print)	y (print)	Date/Time		Signature
be signed	Relinquished by (print)	٥	ate/Time	Signature	ıre		Received	by Laboratory (print)	Date/Time 9	13/2	Received by Laboratory (pring). Bate Time 4 (3/2 Signature Symptoms (3/2 Signature Symptoms).
					LABOR	LABORATORY USE ONLY	ONLY				/
Shipped By	Cooler ID(s)	Custody Seals Y N C B	Intact Y N	Receipt Temp	Receipt Temp Blank On Ice	On Ice ≺ N	8	Payment Type CC Cash Check	Amount \$	Rec	Receipt Number (cash/check only)

ELI-COC-10/18 v.3 In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ANALYTICAL SUMMARY REPORT

October 03, 2024

Bison Engineering 3143 E Lyndale Ave Helena, MT 59601-6401

Work Order: B24091702 Quote ID: B4795
Project Name: Montana Resources/Greely School PW

Energy Laboratories Inc Billings MT received the following 10 samples for Bison Engineering on 9/18/2024 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
B24091702-001	Particulate filter C1812166 Lab Blank	07/24/24 12:20	09/18/24	Air	Metals on air filter by ICP/ICPMS Nitric acid-extraction by 40CFR50G
B24091702-002	Particulate filter C1812167 TSP Pine St	07/29/24 0:00	09/18/24	Air	Same As Above
B24091702-003	Particulate filter C1812168 TSP Walnut St	07/29/24 0:00	09/18/24	Air	Same As Above
B24091702-004	Particulate filter C1812169 TSP Pine St	08/04/24 0:00	09/18/24	Air	Same As Above
B24091702-005	Particulate filter C1812170 TSP Walnut St	08/04/24 0:00	09/18/24	Air	Same As Above
B24091702-006	Particulate filter C1812171 TSP Pine St	08/10/24 0:00	09/18/24	Air	Same As Above
B24091702-007	Particulate filter C1812172 TSP Walnut St	08/10/24 0:00	09/18/24	Air	Same As Above
B24091702-008	Particulate filter C1812173 TSP Pine St	08/16/24 0:00	09/18/24	Air	Same As Above
B24091702-009	Particulate filter C1812174 TSP Walnut ST	08/16/24 0:00	09/18/24	Air	Same As Above
B24091702-010	Particulate filter C1812175 Field Blank	08/20/24 10:11	09/18/24	Air	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 So. 27th Street, Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

Energy Laboratories, Inc. verifies the reported results for the analysis has been technically reviewed and approved for release.

If you have any questions regarding these test results, please contact your Project Manager.

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

CLIENT: Bison Engineering

Project: Montana Resources/Greely School PW Report Date: 10/03/24

Work Order: B24091702 CASE NARRATIVE

Per client request, results are based on the final concentration using 25 mL of extraction solution per filter.

All "J" qualified analyte concentrations are below the laboratory minimum recommended Reporting Limit (RL) and above the lowest method detection limit (MDL)/Limit of Detection (LOD). Inorganic analytes reported with "J" qualifiers should be verified against the corresponding method blank and continuing calibration blanks. Inorganic "J" quantitations near the MDL/LOD may be suspect due to possible method background levels, sample matrix effects, and/or daily variability in instrument signal-to-noise levels.

Billings, MT 406.252.6325 . Casper, WY 307.235.0515 . Gillette, WY 307.686.7175 . Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24091702-001 **Collection Date:** 07/24/24 12:20

DateReceived: 09/18/24 Report Date: 10/03/24

Client: Bison Engineering

Client Sample ID: Particulate filter C1812166 Lab Blank
Project: Montana Resources/Greely School PW

Matrix: Air

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	10/02/24 14:13 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	2A:44	193655
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	10/02/24 14:13 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	2A:44	193655
Copper	ND	ug/filter		1.0	0.16	E200.8	10/02/24 14:13 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	2A:44	193655
Lead	ND	ug/filter		1.0	0.042	E200.8	10/02/24 14:13 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	2A:44	193655
Manganese	ND	ug/filter		1.0	0.18	E200.8	10/02/24 14:13 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	2A:44	193655
Molybdenum	ND	ug/filter		1.0	0.0050	E200.8	10/02/24 14:13 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	2A:44	193655
Zinc	0.31	ug/filter	J	1.0	0.30	E200.8	10/02/24 18:07 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A: 87	193655

Montana Resources/Greely School PW

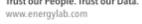
Billings, MT 406.252.6325 • Casper, WY 307.235.0515 • Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24091702-002

Collection Date: 07/29/24 DateReceived: 09/18/24


Report Date: 10/03/24

Client:	Bison Engineering
Client Sample ID:	Particulate filter C1812167 TSP Pine St

Matrix:

Project:

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	10/02/24 14:19 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 45	193655
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	10/02/24 18:13 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 88	193655
Copper	3.0	ug/filter		1.0	0.16	E200.8	10/02/24 14:19 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 45	193655
Lead	0.25	ug/filter	J	1.0	0.042	E200.8	10/02/24 14:19 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 45	193655
Manganese	1.1	ug/filter		1.0	0.18	E200.8	10/02/24 14:19 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 45	193655
Molybdenum	0.23	ug/filter	J	1.0	0.0050	E200.8	10/02/24 14:19 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 45	193655
Zinc	1.2	ug/filter		1.0	0.30	E200.8	10/02/24 14:19 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 45	193655

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24091702-003

Collection Date: 07/29/24 DateReceived: 09/18/24

Report Date: 10/03/24

Client:	Bison Engineering
Client Semple ID.	Dortioulate filter C191216

Client Sample ID: Particulate filter C1812168 TSP Walnut St Montana Resources/Greely School PW Project:

Matrix:

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	10/02/24 14:24 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_2410	02A:46	193655
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	10/02/24 14:24 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_2410	02A:46	193655
Copper	1.8	ug/filter		1.0	0.16	E200.8	10/02/24 14:24 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_2410	02A : 46	193655
Lead	0.16	ug/filter	J	1.0	0.042	E200.8	10/02/24 18:19 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_2410	02A : 89	193655
Manganese	0.88	ug/filter	J	1.0	0.18	E200.8	10/02/24 14:24 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_2410	02A:46	193655
Molybdenum	0.10	ug/filter	J	1.0	0.0050	E200.8	10/02/24 14:24 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_2410	02A:46	193655
Zinc	1.0	ug/filter		1.0	0.30	E200.8	10/02/24 14:24 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_2410	02A : 46	193655

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 • Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24091702-004

Collection Date: 08/04/24 DateReceived: 09/18/24 Report Date: 10/03/24

Client Sample ID: Particulate filter C1812169 TSP Pine St Project: Montana Resources/Greely School PW

Bison Engineering

Client:

Matrix: Air Re

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	10/02/24 14:30 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 47	193655
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	10/02/24 14:30 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 47	193655
Copper	3.8	ug/filter		1.0	0.16	E200.8	10/02/24 14:30 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 47	193655
Lead	0.16	ug/filter	J	1.0	0.042	E200.8	10/02/24 18:25 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 90	193655
Manganese	0.94	ug/filter	J	1.0	0.18	E200.8	10/02/24 14:30 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 47	193655
Molybdenum	0.13	ug/filter	J	1.0	0.0050	E200.8	10/02/24 14:30 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 47	193655
Zinc	1.1	ug/filter		1.0	0.30	E200.8	10/02/24 14:30 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 47	193655

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24091702-005

Collection Date: 08/04/24 DateReceived: 09/18/24

Report Date: 10/03/24

Client Sample ID:	Particulate filter C1812170 TSP Walnut St
Project:	Montana Resources/Greely School PW

Bison Engineering

Matrix: Air

Client:

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	10/02/24 14:36 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 48	193655
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	10/02/24 14:36 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 48	193655
Copper	2.3	ug/filter		1.0	0.16	E200.8	10/02/24 14:36 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 48	193655
Lead	0.18	ug/filter	J	1.0	0.042	E200.8	10/02/24 18:30 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 91	193655
Manganese	1.3	ug/filter		1.0	0.18	E200.8	10/02/24 14:36 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 48	193655
Molybdenum	0.083	ug/filter	J	1.0	0.0050	E200.8	10/02/24 14:36 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 48	193655
Zinc	1.4	ug/filter		1.0	0.30	E200.8	10/02/24 14:36 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 48	193655

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24091702-006

Collection Date: 08/10/24 DateReceived: 09/18/24

Report Date: 10/03/24

Client:	Bison Engineering
Client Sample ID:	Particulate filter C1812171 TSP Pine St
Project:	Montana Resources/Greely School PW

Matrix:

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	10/02/24 14:42 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	2A:49	193655
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	10/02/24 14:42 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	2A:49	193655
Copper	1.5	ug/filter		1.0	0.16	E200.8	10/02/24 14:42 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	2A:49	193655
Lead	0.11	ug/filter	J	1.0	0.042	E200.8	10/02/24 18:36 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	2A:92	193655
Manganese	0.50	ug/filter	J	1.0	0.18	E200.8	10/02/24 14:42 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	2A:49	193655
Molybdenum	0.24	ug/filter	J	1.0	0.0050	E200.8	10/02/24 14:42 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	2A:49	193655
Zinc	0.74	ug/filter	J	1.0	0.30	E200.8	10/02/24 14:42 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	2A:49	193655

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 • Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24091702-007

Collection Date: 08/10/24 DateReceived: 09/18/24

Report Date: 10/03/24

Client:	Bison Engineering
Client Sample ID:	Particulate filter C18121

Client Sample ID: Particulate filter C1812172 TSP Walnut St Project: Montana Resources/Greely School PW

Matrix: Air

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	10/02/24 14:48 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 50	193655
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	10/02/24 14:48 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 50	193655
Copper	1.3	ug/filter		1.0	0.16	E200.8	10/02/24 14:48 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 50	193655
Lead	0.087	ug/filter	J	1.0	0.042	E200.8	10/02/24 18:42 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 93	193655
Manganese	0.39	ug/filter	J	1.0	0.18	E200.8	10/02/24 14:48 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 50	193655
Molybdenum	0.056	ug/filter	J	1.0	0.0050	E200.8	10/02/24 14:48 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 50	193655
Zinc	0.63	ug/filter	J	1.0	0.30	E200.8	10/02/24 14:48 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 50	193655

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24091702-008

Collection Date: 08/16/24 DateReceived: 09/18/24

Report Date: 10/03/24

Client Sample ID:	Particulate filter C1812173 TSP Pine St
Project:	Montana Resources/Greely School PW

Bison Engineering

Matrix: Air

Client:

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	10/02/24 15:05 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 53	193655
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	10/02/24 15:05 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 53	193655
Copper	1.9	ug/filter		1.0	0.16	E200.8	10/02/24 15:05 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 53	193655
Lead	0.15	ug/filter	J	1.0	0.042	E200.8	10/02/24 18:48 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 94	193655
Manganese	0.58	ug/filter	J	1.0	0.18	E200.8	10/02/24 15:05 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 53	193655
Molybdenum	0.14	ug/filter	J	1.0	0.0050	E200.8	10/02/24 15:05 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 53	193655
Zinc	0.93	ug/filter	J	1.0	0.30	E200.8	10/02/24 15:05 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241002	A : 53	193655

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24091702-009

Collection Date: 08/16/24 DateReceived: 09/18/24 **Report Date: 10/03/24**

Client Sample ID: Particulate filter C1812174 TSP Walnut ST Montana Resources/Greely School PW

Bison Engineering

Matrix:

Client:

Project:

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	10/02/24 15:11 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 54	193655
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	10/02/24 15:11 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 54	193655
Copper	0.79	ug/filter	J	1.0	0.16	E200.8	10/02/24 15:11 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 54	193655
Lead	0.085	ug/filter	J	1.0	0.042	E200.8	10/02/24 19:06 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 97	193655
Manganese	0.38	ug/filter	J	1.0	0.18	E200.8	10/02/24 15:11 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 54	193655
Molybdenum	0.015	ug/filter	J	1.0	0.0050	E200.8	10/02/24 15:11 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 54	193655
Zinc	0.61	ug/filter	J	1.0	0.30	E200.8	10/02/24 15:11 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 54	193655

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 • Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24091702-010 **Collection Date:** 08/20/24 10:11

DateReceived: 09/18/24 Report Date: 10/03/24

Client: Bison Engineering

Client Sample ID: Particulate filter C1812175 Field Blank
Project: Montana Resources/Greely School PW

Matrix: Air

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	10/02/24 15:17 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 55	193655
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	10/02/24 15:17 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 55	193655
Copper	ND	ug/filter		1.0	0.16	E200.8	10/02/24 15:17 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 55	193655
Lead	ND	ug/filter		1.0	0.042	E200.8	10/02/24 15:17 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 55	193655
Manganese	ND	ug/filter		1.0	0.18	E200.8	10/02/24 15:17 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 55	193655
Molybdenum	ND	ug/filter		1.0	0.0050	E200.8	10/02/24 15:17 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_24100	2A : 55	193655
Zinc	ND	ug/filter		1.0	0.30	E200.8	10/02/24 15:17 / jks	09/30/24 12:37	40CFR50	ICPMS207-B_241003	2A : 55	193655

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Bison Engineering Work Order: B24091702 Report Date: 10/03/24

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method:	E200.8							Analytic	cal Run: ICPMS207-B	_241002A
Lab ID:	QCS	7 Initia	al Calibration	on Verificati	on Standard				10/02	/24 11:28
Arsenic			0.0487	mg/L	0.0050	97	90	110		
Cadmium			0.0245	mg/L	0.0010	98	90	110		
Copper			0.0504	mg/L	0.010	101	90	110		
Lead			0.0486	mg/L	0.0010	97	90	110		
Manganese	e		0.246	mg/L	0.0050	98	90	110		
Molybdenu	ım		0.0478	mg/L	0.0050	96	90	110		
Zinc			0.0497	mg/L	0.0050	99	90	110		
Lab ID:	CCV	7 Con	tinuing Cal	ibration Ver	ification Standa	rd			10/02	/24 13:38
Arsenic			0.0484	mg/L	0.0050	97	90	110		
Cadmium			0.0491	mg/L	0.0010	98	90	110		
Copper			0.0501	mg/L	0.010	100	90	110		
Lead			0.0478	mg/L	0.0010	96	90	110		
Manganese	е		0.0487	mg/L	0.0050	97	90	110		
Molybdenu	ım		0.0483	mg/L	0.0050	97	90	110		
Zinc			0.0488	mg/L	0.0050	98	90	110		
Lab ID:	CCV	7 Con	tinuing Cal	ibration Ver	ification Standa	rd			10/02	/24 14:54
Arsenic			0.0480	mg/L	0.0050	96	90	110		
Cadmium			0.0490	mg/L	0.0010	98	90	110		
Copper			0.0499	mg/L	0.010	100	90	110		
Lead			0.0471	mg/L	0.0010	94	90	110		
Manganese	e		0.0482	mg/L	0.0050	96	90	110		
Molybdenu	ım		0.0486	mg/L	0.0050	97	90	110		
Zinc			0.0487	mg/L	0.0050	97	90	110		
Lab ID:	CCV	7 Con	tinuing Cal	ibration Ver	ification Standa	rd			10/02	/24 17:38
Arsenic			0.0472	mg/L	0.0050	94	90	110		
Cadmium			0.0487	mg/L	0.0010	97	90	110		
Copper			0.0489	mg/L	0.010	98	90	110		
Lead			0.0474	mg/L	0.0010	95	90	110		
Manganese	е		0.0475	mg/L	0.0050	95	90	110		
Molybdenu	ım		0.0490	mg/L	0.0050	98	90	110		
Zinc			0.0483	mg/L	0.0050	97	90	110		
Lab ID:	CCV	7 Con	tinuing Cal	ibration Ver	ification Standa	rd			10/02	/24 18:54
Arsenic			0.0477	mg/L	0.0050	95	90	110		
Cadmium			0.0492	mg/L	0.0010	98	90	110		
Copper			0.0494	mg/L	0.010	99	90	110		
Lead			0.0470	mg/L	0.0010	94	90	110		
Manganese	e		0.0476	mg/L	0.0050	95	90	110		
Molybdenu			0.0488	mg/L	0.0050	98	90	110		
Zinc			0.0491	mg/L	0.0050	98	90	110		

Qualifiers:

Method:

RL - Analyte Reporting Limit

E200.8

ND - Not detected at the Reporting Limit (RL)

Batch: 193655

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Bison Engineering Work Order: B24091702 Report Date: 10/03/24

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8								Batc	h: 193655
Lab ID: MB-193655	7 Method Blank				Run: ICPM	S207-B_241002	A	10/02	/24 13:49
Arsenic	ND	ug/filter	0.06						
Cadmium	ND	ug/filter	0.006						
Copper	ND	ug/filter	0.2						
Lead	ND	ug/filter	0.04						
Manganese	ND	ug/filter	0.2						
Molybdenum	ND	ug/filter	0.005						
Zinc	ND	ug/filter	0.3						
Lab ID: LCS-193655	7 Laboratory Co	ntrol Sample			Run: ICPM	S207-B_241002/	A	10/02	/24 13:55
Arsenic	101	ug/filter	1.0	101	85	115			
Cadmium	51.7	ug/filter	1.0	103	85	115			
Copper	106	ug/filter	5.0	106	85	115			
Lead	98.3	ug/filter	1.0	98	85	115			
Manganese	506	ug/filter	5.0	101	85	115			
Molybdenum	101	ug/filter	1.0	101	85	115			
Zinc	105	ug/filter	5.0	105	85	115			
Lab ID: LCSD-193655	7 Laboratory Co	ontrol Sample I	Duplicate		Run: ICPM	S207-B_241002/	A	10/02	/24 14:01
Arsenic	99.9	ug/filter	1.0	100	85	115			
Cadmium	51.5	ug/filter	1.0	103	85	115			
Copper	104	ug/filter	5.0	104	85	115			
Lead	98.3	ug/filter	1.0	98	85	115			
Manganese	503	ug/filter	5.0	101	85	115			
Molybdenum	100	ug/filter	1.0	100	85	115			
Zinc	106	ug/filter	5.0	106	85	115			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Login completed by: Lyndsi E. LeProwse

Work Order Receipt Checklist

Bison Engineering

B24091702

Date Received: 9/18/2024

Reviewed by:	jmiller		Red	ceived by: CMJ
Reviewed Date:	9/25/2024		Carr	ier name: Hand Deliver
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present
Custody seals intact on all sh	nipping container(s)/cooler(s)?	Yes	No 🗌	Not Present ✓
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?		Yes ✓	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes ✓	No 🗌	
Chain of custody agrees with	n sample labels?	Yes ✓	No 🗌	
Samples in proper container	/bottle?	Yes ✓	No 🗌	
Sample containers intact?		Yes ✓	No 🗌	
Sufficient sample volume for	indicated test?	Yes ✓	No 🗌	
All samples received within h (Exclude analyses that are couch as pH, DO, Res Cl, Su	onsidered field parameters	Yes 🔽	No 🗌	
Temp Blank received in all sl	hipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Applicable
Container/Temp Blank tempe	erature:	4.1°C Blue Ice		
Containers requiring zero her bubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable 🗹

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Trip Blanks and/or Blind Duplicate samples are assigned the earliest collection time for the associated requested analysis in order to evaluate the holding time unless specifically indicated.

Contact and Corrective Action Comments:

None

Chain of Custody & Analytical Request Record

ō

-

Page

Comments

www.energylab.com

Energy Laboratories MUST be contacted prior to RUSH sample submittal for All turnaround times are standard unless marked as RUSH. charges and scheduling -See Instructions Page ELI LAB ID
Laboratory Use Only B4091702 Analyze per history See Attached Date/Time × × × × × × × × × × Juiz Analysis Requested × × × × × × × × × Other Molybdenum Report Information (if different than Account Information) Payment Type Check × × × × × × × × × × Manganese Mailing Address 2751 Enterprise Avenue Suite 2 ■ EDD/EDT (contact laboratory) × × × × × × × × × × eceived by (print) read dmilmine@bison-eng.com Company/Name Bison Engineering, Inc. × × × × × × × × × × Copper S City, State, Zip Billings, MT 59102 LABORATORY USE ONLY (406) 208-4833 × × × × × × × × × × Cadmium Don Milmine On Ice ≺ N × × × × × × × × × D LEVEL IV D NELAC Arsenic filter meter Special Report/Formats: et lon Matrix (See Codes Above) Blank Matrix Codes V - Vegetation Bioassay Other Drinking Water Soils/ Solids W- Water A- Air emp Contact - MO s. Phone 8ò p Email emp C 24 hr. te 24 hr 24 Sonorita sinces to 1220 101 Receipt Project Name, PWSID, Permit, etc. Momtana Resources/Greely School PW oN D Time マネカト **D**Email 9 / 18/24 | 338 Date/Time 11e.(2) Byproduct Material (Can ONLY be Submitted to ELI Casper Location) □ Yes ☐ Hard Copy □ NOT Source or Byproduct Material Source/Processed Ore (Ground or Refined) **CALL BEFORE SENDING 8 Particulate filter C1812173 TSP Pine St 8/16/24 Particulate filter C1812174 TSP Walnut ST 8/16/24 10 Particulate filter C1812175 Field Blank 8/20/24 3 Particulate filter C1812168 TSP Walnut St 7/29/24 Particulate filter C1812172 TSP Walnut St 8/10/24 Particulate filter C1812167 TSP Pine St 7/29/24 Particulate filter C1812171 TSP Pine St 8/10/24 7/24/24 Intact Y 4 Particulate filter C1812169 TSP Pine St 8/4/24 5 Particulate filter C1812170 TSP Walnut St 8/4/24 **Bottle Order** Date EPA/State Compliance Receive Report B Sampler Phone Particulate filter C1812166 Lab Blank sbrown-argott@bison-eng.com Sea URANIUM MINING CLIENTS MUST Indicate sample type Custody Y N Account Information (Billing information) Custody Relinquished by (prigt)
Record MUST Don MILMIN C
be signed Relinquished by (print) Mailing Address 3143 E Lyndale Avenue Sample Identification (Name, Location, Interval, etc.) Company/Name Bison Engineering, Inc Shelley Argott-Brown **⊡**Email Helena MT, 59601 Cooler ID(s) Quote (406) 442-5768 Sample Origin State Montana ☐Hard Copy Project Information MTR223018 Shipped By Receive Invoice be signed City, State, Zip Sampler Name Purchase Contact Phone Email

ELI-COC-10/18 v.3 In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ANALYTICAL SUMMARY REPORT

October 09, 2024

Bison Engineering 3143 E Lyndale Ave Helena, MT 59601-6401

Work Order: B24092107 Quote ID: B4795
Project Name: Montana Resources/Greely School PW

Energy Laboratories Inc Billings MT received the following 10 samples for Bison Engineering on 9/24/2024 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
B24092107-001	Particulate Filter C1812186 TSP Pine St	08/22/24 00:00	09/24/24	Filter	Metals on air filter by ICP/ICPMS Nitric acid-extraction by 40CFR50G
B24092107-002	Particulate Filter C1812187 TSP Walnut St	08/22/24 00:00	09/24/24	Filter	Same As Above
B24092107-003	Particulate Filter C1812188 TSP Pine St	08/28/24 00:00	09/24/24	Filter	Same As Above
B24092107-004	Particulate Filter C1812189 TSP Walnut St	08/28/24 00:00	09/24/24	Filter	Same As Above
B24092107-005	Particulate Filter C1812190 TSP Pine St	09/03/24 00:00	09/24/24	Filter	Same As Above
B24092107-006	Particulate Filter C1812191 TSP Walnut St	09/03/24 00:00	09/24/24	Filter	Same As Above
B24092107-007	Particulate Filter C1812192 Lab Blank	08/14/24 12:30	09/24/24	Filter	Same As Above
B24092107-008	Particulate Filter C1812193 TSP Pine St	09/09/24 00:00	09/24/24	Filter	Same As Above
B24092107-009	Particulate Filter C1812194 TSP Walnut St	09/09/24 00:00	09/24/24	Filter	Same As Above
B24092107-010	Particulate Filter C1812195 Field Blank	09/09/24 13:17	09/24/24	Filter	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 So. 27th Street, Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

Energy Laboratories, Inc. verifies the reported results for the analysis has been technically reviewed and approved for release.

If you have any questions regarding these test results, please contact your Project Manager.

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

CLIENT: Bison Engineering

Project: Montana Resources/Greely School PW Report Date: 10/09/24

Work Order: B24092107 CASE NARRATIVE

Per client request, results are based on the final concentration using 25 mL of extraction solution per filter.

All "J" qualified analyte concentrations are below the laboratory minimum recommended Reporting Limit (RL) and above the lowest method detection limit (MDL)/Limit of Detection (LOD). Inorganic analytes reported with "J" qualifiers should be verified against the corresponding method blank and continuing calibration blanks. Inorganic "J" quantitations near the MDL/LOD may be suspect due to possible method background levels, sample matrix effects, and/or daily variability in instrument signal-to-noise levels.

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Bison Engineering

Montana Resources/Greely School PW Project:

Lab ID: B24092107-001

Client Sample ID: Particulate Filter C1812186 TSP Pine St

Report Date: 10/09/24 Collection Date: 08/22/24 DateReceived: 09/24/24

Matrix: Filter

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL Method	Analysis Date / By	
METALS IN AIR							
Arsenic	0.068	ug/filter	J	1.0	E200.8	10/07/24 22:58 / aem	
Cadmium	ND	ug/filter		1.0	E200.8	10/09/24 14:46 / aem	
Copper	1.4	ug/filter		1.0	E200.8	10/04/24 15:04 / aem	
_ead	0.10	ug/filter	J	1.0	E200.8	10/04/24 15:04 / aem	
Manganese	0.47	ug/filter	J	1.0	E200.8	10/07/24 22:58 / aem	
Molybdenum	0.094	ug/filter	J	1.0	E200.8	10/04/24 15:04 / aem	
Zinc	0.79	ug/filter	J	1.0	E200.8	10/04/24 15:04 / aem	

Report RL - Analyte Reporting Limit Definitions: QCL - Quality Control Limit

J - Estimated value - analyte was present but less than the

Reporting Limit (RL)

MCL - Maximum Contaminant Level

ND - Not detected at the Reporting Limit (RL)

Prepared by Billings, MT Branch

Client: Bison Engineering

Montana Resources/Greely School PW Project:

Lab ID: B24092107-002

Client Sample ID: Particulate Filter C1812187 TSP Walnut St

Report Date: 10/09/24

Collection Date: 08/22/24 DateReceived: 09/24/24

Matrix: Filter

				MCL/	
Analyses	Result Units	Qualifiers	RL	QCL Method	Analysis Date / By
METALS IN AIR					
Arsenic	0.064 ug/filt	er J	1.0	E200.8	10/07/24 23:04 / aem
Cadmium	ND ug/filt	er	1.0	E200.8	10/09/24 14:52 / aem
Copper	0.60 ug/filt	er J	1.0	E200.8	10/04/24 15:10 / aem
Lead	0.069 ug/filt	er J	1.0	E200.8	10/04/24 15:10 / aem
Manganese	0.35 ug/filt	er J	1.0	E200.8	10/07/24 23:04 / aem
Molybdenum	0.055 ug/filt	er J	1.0	E200.8	10/04/24 15:10 / aem
Zinc	0.48 ug/filt	er J	1.0	E200.8	10/04/24 15:10 / aem

Report RL - Analyte Reporting Limit Definitions: QCL - Quality Control Limit

J - Estimated value - analyte was present but less than the

Reporting Limit (RL)

MCL - Maximum Contaminant Level

ND - Not detected at the Reporting Limit (RL)

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Bison Engineering

Montana Resources/Greely School PW Project:

Lab ID: B24092107-003

Client Sample ID: Particulate Filter C1812188 TSP Pine St

Report Date: 10/09/24 Collection Date: 08/28/24 DateReceived: 09/24/24

Matrix: Filter

					MCL/	
Analyses	Result	Units	Qualifiers	RL	QCL Method	Analysis Date / By
METALS IN AIR						
Arsenic	0.065	ug/filter	J	1.0	E200.8	10/07/24 23:10 / aem
Cadmium	ND	ug/filter		1.0	E200.8	10/09/24 14:58 / aem
Copper	3.1	ug/filter		1.0	E200.8	10/04/24 15:16 / aem
Lead	0.15	ug/filter	J	1.0	E200.8	10/04/24 15:16 / aem
Manganese	0.27	ug/filter	J	1.0	E200.8	10/07/24 23:10 / aem
Molybdenum	0.23	ug/filter	J	1.0	E200.8	10/04/24 15:16 / aem
Zinc	0.98	ug/filter	J	1.0	E200.8	10/04/24 15:16 / aem

Report RL - Analyte Reporting Limit Definitions:

QCL - Quality Control Limit

J - Estimated value - analyte was present but less than the Reporting Limit (RL)

MCL - Maximum Contaminant Level

Prepared by Billings, MT Branch

Client: Bison Engineering

Montana Resources/Greely School PW Project:

Lab ID: B24092107-004

Client Sample ID: Particulate Filter C1812189 TSP Walnut St

Report Date: 10/09/24 Collection Date: 08/28/24

DateReceived: 09/24/24

Matrix: Filter

				MCL/	
Analyses	Result Units	Qualifiers	RL	QCL Method	Analysis Date / By
METALS IN AIR					
Arsenic	0.062 ug/filter	J	1.0	E200.8	10/07/24 23:16 / aem
Cadmium	ND ug/filter		1.0	E200.8	10/09/24 15:04 / aem
Copper	0.33 ug/filter	J	1.0	E200.8	10/04/24 15:22 / aem
_ead	0.23 ug/filter	J	1.0	E200.8	10/04/24 15:22 / aem
Manganese	0.26 ug/filter	J	1.0	E200.8	10/07/24 23:16 / aem
Molybdenum	0.045 ug/filter	J	1.0	E200.8	10/04/24 15:22 / aem
Zinc	0.32 ug/filter	J	1.0	E200.8	10/04/24 15:22 / aem

Report RL - Analyte Reporting Limit Definitions: QCL - Quality Control Limit

J - Estimated value - analyte was present but less than the

Reporting Limit (RL)

MCL - Maximum Contaminant Level

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Bison Engineering

Montana Resources/Greely School PW Project:

Lab ID: B24092107-005

Client Sample ID: Particulate Filter C1812190 TSP Pine St

Report Date: 10/09/24 Collection Date: 09/03/24

DateReceived: 09/24/24 Matrix: Filter

					MCL/	
Analyses	Result	Units	Qualifiers	RL	QCL Method	Analysis Date / By
METALS IN AIR						
Arsenic	0.073	ug/filter	J	1.0	E200.8	10/07/24 23:22 / aem
Cadmium	ND	ug/filter		1.0	E200.8	10/09/24 15:10 / aem
Copper	2.6	ug/filter		1.0	E200.8	10/04/24 15:28 / aem
_ead	0.098	ug/filter	J	1.0	E200.8	10/04/24 15:28 / aem
Manganese	0.32	ug/filter	J	1.0	E200.8	10/07/24 23:22 / aem
Molybdenum	0.15	ug/filter	J	1.0	E200.8	10/04/24 15:28 / aem
Zinc	0.64	ug/filter	J	1.0	E200.8	10/04/24 15:28 / aem

Report RL - Analyte Reporting Limit Definitions: QCL - Quality Control Limit

J - Estimated value - analyte was present but less than the

Reporting Limit (RL)

MCL - Maximum Contaminant Level

Prepared by Billings, MT Branch

Client: Bison Engineering

Montana Resources/Greely School PW Project:

Lab ID: B24092107-006

Client Sample ID: Particulate Filter C1812191 TSP Walnut St

Report Date: 10/09/24

Collection Date: 09/03/24 DateReceived: 09/24/24

Matrix: Filter

				MCL/	
Analyses	Result Units	Qualifiers	RL	QCL Method	Analysis Date / By
METALS IN AIR					
Arsenic	0.078 ug/filte	r J	1.0	E200.8	10/07/24 23:28 / aem
Cadmium	ND ug/filte	r	1.0	E200.8	10/09/24 15:16 / aem
Copper	0.81 ug/filte	r J	1.0	E200.8	10/04/24 15:34 / aem
_ead	0.088 ug/filte	r J	1.0	E200.8	10/04/24 15:34 / aem
Manganese	0.35 ug/filte	r J	1.0	E200.8	10/07/24 23:28 / aem
Molybdenum	0.11 ug/filte	r J	1.0	E200.8	10/04/24 15:34 / aem
Zinc	0.75 ug/filte	r J	1.0	E200.8	10/04/24 15:34 / aem

Report RL - Analyte Reporting Limit Definitions: QCL - Quality Control Limit

J - Estimated value - analyte was present but less than the

Reporting Limit (RL)

MCL - Maximum Contaminant Level

Report Date: 10/09/24

Prepared by Billings, MT Branch

Client: Bison Engineering

Montana Resources/Greely School PW Project: Collection Date: 08/14/24 12:30

Lab ID: B24092107-007

DateReceived: 09/24/24 Client Sample ID: Particulate Filter C1812192 Lab Blank Matrix: Filter

			MCL/	
Analyses	Result Unit	s Qualifiers R	L QCL Metho	d Analysis Date / By
METALS IN AIR				
Arsenic	ND ug/fi	Iter 1.	0 E200.8	3 10/04/24 15:40 / aem
Cadmium	ND ug/fi	Iter 1.	0 E200.8	10/04/24 15:40 / aem
Copper	ND ug/fi	Iter 1.	0 E200.8	3 10/04/24 15:40 / aem
Lead	ND ug/fi	Iter 1.	0 E200.8	3 10/04/24 15:40 / aem
Manganese	ND ug/fi	Iter 1.	0 E200.8	3 10/07/24 23:34 / aem
Molybdenum	ND ug/fi	Iter 1.	0 E200.8	10/09/24 15:22 / aem
Zinc	ND ug/fi	Iter 1.	0 E200.8	3 10/04/24 15:40 / aem

Report RL - Analyte Reporting Limit Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Bison Engineering

Montana Resources/Greely School PW Project:

Lab ID: B24092107-008

Client Sample ID: Particulate Filter C1812193 TSP Pine St

Report Date: 10/09/24 Collection Date: 09/09/24 DateReceived: 09/24/24

Matrix: Filter

					MCL/	
Analyses	Result	Units	Qualifiers	RL	QCL Method	Analysis Date / By
METALS IN AIR						
Arsenic	0.088	ug/filter	J	1.0	E200.8	10/04/24 15:58 / aem
Cadmium	0.013	ug/filter	J	1.0	E200.8	10/04/24 15:58 / aem
Copper	2.1	ug/filter		1.0	E200.8	10/04/24 15:58 / aem
₋ead	0.13	ug/filter	J	1.0	E200.8	10/04/24 15:58 / aem
Manganese	1.1	ug/filter		1.0	E200.8	10/07/24 23:40 / aem
Molybdenum	0.27	ug/filter	J	1.0	E200.8	10/04/24 15:58 / aem
Zinc	1.3	ug/filter		1.0	E200.8	10/04/24 15:58 / aem

Report RL - Analyte Reporting Limit Definitions:

QCL - Quality Control Limit

J - Estimated value - analyte was present but less than the

Reporting Limit (RL)

MCL - Maximum Contaminant Level

Prepared by Billings, MT Branch

Client: Bison Engineering

Montana Resources/Greely School PW Project:

Lab ID: B24092107-009

Client Sample ID: Particulate Filter C1812194 TSP Walnut St

Report Date: 10/09/24 Collection Date: 09/09/24

DateReceived: 09/24/24

Matrix: Filter

					MCL/	
Analyses	Result U	Jnits	Qualifiers	RL	QCL Method	Analysis Date / By
METALS IN AIR						
Arsenic	0.078 u	ug/filter	J	1.0	E200.8	10/07/24 23:46 / aem
Cadmium	0.0069 u	ug/filter	J	1.0	E200.8	10/09/24 15:27 / aem
Copper	0.70 u	ug/filter	J	1.0	E200.8	10/04/24 16:03 / aem
_ead	0.063 u	ug/filter	J	1.0	E200.8	10/04/24 16:03 / aem
Manganese	0.65 u	ug/filter	J	1.0	E200.8	10/07/24 23:46 / aem
Molybdenum	0.026 u	ug/filter	J	1.0	E200.8	10/04/24 16:03 / aem
Zinc	0.63 u	ug/filter	J	1.0	E200.8	10/04/24 16:03 / aem

Report RL - Analyte Reporting Limit Definitions: QCL - Quality Control Limit

J - Estimated value - analyte was present but less than the

Reporting Limit (RL)

MCL - Maximum Contaminant Level

Report Date: 10/09/24

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Bison Engineering

Montana Resources/Greely School PW Project: Collection Date: 09/09/24 13:17

Lab ID: B24092107-010

DateReceived: 09/24/24 Client Sample ID: Particulate Filter C1812195 Field Blank Matrix: Filter

				MCL/	
Analyses	Result Uni	ts Qualifiers	RL	QCL Method	Analysis Date / By
METALS IN AIR					
Arsenic	ND ug/i	ilter	1.0	E200.8	10/04/24 16:09 / aem
Cadmium	ND ug/i	ilter	1.0	E200.8	10/04/24 16:09 / aem
Copper	ND ug/i	ilter	1.0	E200.8	10/04/24 16:09 / aem
.ead	ND ug/i	ilter	1.0	E200.8	10/04/24 16:09 / aem
Manganese	ND ug/i	ilter	1.0	E200.8	10/07/24 23:52 / aem
Molybdenum	0.016 ug/1	ilter J	1.0	E200.8	10/04/24 16:09 / aem
Zinc	ND ug/i	ilter	1.0	E200.8	10/04/24 16:09 / aem

Report RL - Analyte Reporting Limit Definitions: QCL - Quality Control Limit

J - Estimated value - analyte was present but less than the

ND - Not detected at the Reporting Limit (RL)

MCL - Maximum Contaminant Level

Prepared by Billings, MT Branch

Client: Bison Engineering Work Order: B24092107 Report Date: 10/09/24

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8							Analytica	l Run: l	CPMS207-B_	_241009A
Lab ID:	QCS	2 Initia	al Calibratio	n Verificatio	n Standard					10/09/	24 13:01
Cadmium			0.0249	mg/L	0.0010	100	90	110			
Molybden	um		0.0486	mg/L	0.0050	97	90	110			
Lab ID:	CCV	2 Cor	ntinuing Cal	ibration Verif	ication Standar	d				10/09/	24 14:29
Cadmium			0.0506	mg/L	0.0010	101	90	110			
Molybden	um		0.0501	mg/L	0.0050	100	90	110			
Method:	E200.8									Batch	n: 193796
Lab ID:	MB-193796	2 Met	hod Blank				Run: ICPMS	S207-B_241009A	١	10/09/	24 14:41
Cadmium			ND	ug/filter	0.006						
Molybden	um		0.006	ug/filter	0.005						

Prepared by Billings, MT Branch

Client: Bison Engineering Work Order: B24092107 Report Date: 10/09/24

Qual	RPD RPDLimit	High Limit	Low Limit	%REC	RL	Units	t Result	Count		Analyte
241004A	l Run: ICPMS208-B_	Analytical						200.8	E200.8	Method:
24 12:53	10/04/				n Standard	on Verificatio	Initial Calibration	S 6 II	QCS	Lab ID:
		110	90	100	0.0050	mg/L	0.0501			Arsenic
		110	90	97	0.0010	mg/L	0.0243			Cadmium
		110	90	103	0.010	mg/L	0.0514			Copper
		110	90	96	0.0010	mg/L	0.0479			Lead
		110	90	95	0.0050	mg/L	0.0474		ım	Molybdenu
		110	90	101	0.0050	mg/L	0.0504			Zinc
24 14:22	10/04/			d	ication Standar	libration Verif	Continuing Ca	V 6 (CCV	Lab ID:
		110	90	99	0.0050	mg/L	0.0495			Arsenic
		110	90	94	0.0010	mg/L	0.0472			Cadmium
		110	90	102	0.010	mg/L	0.0511			Copper
		110	90	94	0.0010	mg/L	0.0468			Lead
		110	90	94	0.0050	mg/L	0.0471		ım	Molybdenu
		110	90	100	0.0050	mg/L	0.0501			Zinc
24 15:46	10/04/			d	ication Standar	libration Verif	Continuing Ca	v 6 (CCV	Lab ID:
		110	90	97	0.0050	mg/L	0.0485			Arsenic
		110	90	92	0.0010	mg/L	0.0460			Cadmium
		110	90	101	0.010	mg/L	0.0504			Copper
		110	90	91	0.0010	mg/L	0.0454			Lead
		110	90	92	0.0050	mg/L	0.0459		ım	Molybdenu
		110	90	97	0.0050	mg/L	0.0483			Zinc
n: 193796	Batch							200.8	E200.8	Method:
24 14:40	A 10/04/	S208-B_241004A	Run: ICPMS				Method Blank	- 193796 7 N	MB-19379	Lab ID:
					0.06	ug/filter	ND			Arsenic
					0.004	ug/filter	ND			Cadmium
					0.2	ug/filter	ND			Copper
					0.04	ug/filter	ND			Lead
					0.2	ug/filter	ND		e	Manganes
					0.006	ug/filter	0.03		ım	Molybdenu
					0.3	ug/filter	ND			Zinc
24 14:46	A 10/04/	S208-B_241004A	Run: ICPMS			ntrol Sample	Laboratory Co	S-193796 7 L	LCS-19379	Lab ID:
		115	85	105	1.0	ug/filter	105			Arsenic
		115	85	103	1.0	ug/filter	51.7			Cadmium
		115	85	109	5.0	ug/filter	109			Copper
		115	85	101	1.0	ug/filter	100			Lead
		115	85	106	5.0	ug/filter	528		e	Manganes
		115	85	100	1.0	ug/filter	99.8		ım	Molybdenu
		115	85	108	5.0	ug/filter	108			Zinc
24 14:52	A 10/04/	S208-B_241004A	Run: ICPMS		Duplicate	ntrol Sample	Laboratory Co	SD-193796 7 L	LCSD-193	Lab ID:
		115	85	106	1.0	ug/filter	106			Arsenic
		115	85	102	1.0	ug/filter	51.1			Cadmium

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Billings, MT Branch

Client: Bison Engineering Work Order: B24092107 Report Date: 10/09/24

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8									Batcl	h: 193796
Lab ID:	LCSD-193796	7 Lal	boratory Co	ntrol Sampl	e Duplicate		Run: ICPM	S208-B_241004A		10/04/	24 14:52
Lead			99.6	ug/filter	1.0	100	85	115			
Manganes	se		532	ug/filter	5.0	106	85	115			
Molybdeni	um		98.5	ug/filter	1.0	98	85	115			
Zinc			107	ug/filter	5.0	107	85	115			
Method:	E200.8							Analytical	Run: I	CPMS208-B	_241007A
Lab ID:	QCS	2 Init	tial Calibrati	on Verificat	ion Standard					10/07/	24 20:12
Arsenic			0.0503	mg/L	0.0050	101	90	110			
Manganes	se		0.254	mg/L	0.0050	102	90	110			
Lab ID:	ccv	2 Co	ntinuing Ca	libration Ve	rification Standar	d				10/07/	24 22:47
Arsenic			0.0499	mg/L	0.0050	100	90	110			
Manganes	se		0.0490	mg/L	0.0050	98	90	110			
Method:	E200.8									Batcl	h: 193796
Lab ID:	MB-193796	2 Me	thod Blank				Run: ICPM	S208-B_241007A		10/07/	24 22:41
Arsenic			ND	ug/filter	0.06						
Manganes	se		ND	ug/filter	0.2						

Work Order Receipt Checklist

Bison Engineering

Login completed by: Crystal M. Jones

B24092107

Date Received: 9/24/2024

- 3	- ,			
Reviewed by:	gmccartney		Re	ceived by: KLP
Reviewed Date:	10/1/2024		Car	rier name: Hand Deliver
Shipping container/cooler in	good condition?	Yes √	No 🗌	Not Present
Custody seals intact on all sl	nipping container(s)/cooler(s)?	Yes	No 🗌	Not Present ✓
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?		Yes ✓	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes ✓	No 🗌	
Chain of custody agrees with	n sample labels?	Yes ✓	No 🗌	
Samples in proper container	/bottle?	Yes ✓	No 🗌	
Sample containers intact?		Yes ✓	No 🗌	
Sufficient sample volume for	indicated test?	Yes ✓	No 🗌	
All samples received within h (Exclude analyses that are countries as pH, DO, Res CI, Su	onsidered field parameters	Yes ✓	No 🗌	
Temp Blank received in all sl	hipping container(s)/cooler(s)?	Yes	No 🔽	Not Applicable
Container/Temp Blank tempe	erature:	17.9°C Blue Ice		
Containers requiring zero her bubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable ✓

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Trip Blanks and/or Blind Duplicate samples are assigned the earliest collection time for the associated requested analysis in order to evaluate the holding time unless specifically indicated.

Contact and Corrective Action Comments:

None

Chain of Custody & Analytical Request Record

of

Account Information (Billing information)	Report Information (if cifferent than Account Information)	Comments
Company/Name Bison Engineering, Inc.	Company/Name Bison Engineering, Inc.	
Contact Shelley Argott-Brown	Contact Don Milmine	
Phone (406) 442-5768	Phone (406) 208-4833	Analyze per history
Mailing Address 3143 E Lyndale Avenue	Mailing Address 2751 Enterprise Avenue Suite 2	
City, State, Zip Helena MT, 59601	City, State, Zip Billings, MT 59102	
Email sbrown-argott@bison-eng.com	Email dmilmine@bison-eng.com	
Receive Invoice	Receive Report	
Purchase Order Quote Bottle Order MTR224018	Special Report/Formats: □ LEVEL IV □ NELAC □ EDD/EDT (contact laboratory) □ Other	
Project Information	Matrix Codes Analysis Requested	

	All turnaround times are standard unless marked as	RUSH.	MUST be contacted prior to	CUSH sample submittal for charges and scheduling – See Instructions Page		ELI LAB ID	TAT Laboratory Use Only	B24092107						
				httached	1	99	S							
						_								_
ted						οι	ı!Ζ	×	×	×	×	×	×	
senbe				wnuə	pc	ηλĮc	M	×	×	×	×	×	×	
Analysis Requested				əsəu	ısı	อินซ	₽W	×	×	×	×	×	×	
Ana						рe	Pγ	×	×	×	×	×	×	
				,	19	ddo	၁၁	×	×	×	×	×	×	
				wi	nir	ирі	SO	×	×	×	×	×	×	
					oir	199		×	×	×	×	×	×	
Matrix Codes	Air Air			Other Ornking Water		_	S (See Codes Above)	Siter	Citter	on later Liter	SH TEKTON	on Teffon	on letter	Sant Chas
Matr	V	'n	> 0	- O O - O		Number of	Containers	1	٢	1	-	-	-	
	chool PW		es 🗖 No	tion)		Collection	Time	24 hr	24 Inr	24 hr	comosite	24 hn	conpode	
	s/Greely So		npliance 🗖 Yes	RE SENDING		Colle	Date	8/22/24	8/22/24	8/28/24			9/3/24	
	ana Resource	Sampler Phone	EPA/State Compliance	sample type. ad) **CALL BEFO		-		TSP Pine St	SP Walnut St	TSP Pine St	SP Walnut St	TSP PineSt	P Walnut St	
Project Information	Project Name, PWSID, Permit, etc. Momtana Resources/Greely School	Sampler Name	Sample Origin State Montana	URANIUM MINING CLIENTS MUST indicate sample type. In NOT Source or Byproduct Material In Source/Processed Over (Ground or Refined) **CALL BEFORE SENDING In 144.0?) Romording Material (Can ONI Y be Submitted to ELI Casper Location)	a constant of the constant of	Sample Identification	(Name, Location, Interval, etc.)	1 Particulate filter C1812186 TSP Pine St 8/22/24	2 Particulate filter C1812187 TSP Walnut St 8/22/24 224 Compass/Ac.	3 Particulate filter C1812188 TSP Pine St 8/28/24	4 Particulate filter C1812189 TSP Walnut St 8/28/24	5 Particulate filter C1812190 TSP PineSt 9/3/24	6 Particulate filter C1812191 TSP Walnut St 9/3/24	

10 Particula	10 Particulate filter C1812195 Field Blank 9/6/24	95 Field Blan	k 9/6/24	1317	1 Confett	×	×	×	x x	x		
Custody Reignquished	Custody Religiquished by (pgint)	37	Date/Time/	1421 Signerture	In Ville	Turne	Received by (print)	(print)		Date	Date/Time	Signature
pe signed	be signed Relinquished by (print)	۵	Date/Time	Signature	, p		Received by	Laboratory.	print) K	Óğ	1-24-24 1	121 Signature Le Polle
A DOMESTIC OF STREET, THE STREET, THE	THE REPORT OF THE PERSON OF				LABO	ABORATORY USE O	ONEY/					<i>></i>
Shipped By	Cooler ID(s)	Custody Seals Y N C B	Intact Y N	Receipt Temp °C	Temp Blank Y N	On Ice ≺	2	Payment Type Cash Check	Type eck		Amount \$	Receipt Number (cash/check only)

×

× × × ×

× × × × × ×

× × × × ×

×

× × ×

× ×

×

×

1230 24 hrste 24 hrste 24 hrste

8 Particulate filter C1812193 TSP Pine St 9/9/24 9 Particulate filter C1812194 TSP Walnut ST 9/9/24

Particulate filter C1812192 Lab Blank

8/14/24

× ×

×

×

×

×

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-10/18 v.3

ANALYTICAL SUMMARY REPORT

November 12, 2024

Bison Engineering 3143 E Lyndale Ave Helena, MT 59601-6401

Work Order: B24102437 Quote ID: B4795
Project Name: Montana Resources/Greely School PW

Energy Laboratories Inc Billings MT received the following 10 samples for Bison Engineering on 10/29/2024 for analysis.

Lab ID	Client Sample ID	Collect Date F	Receive Date	Matrix	Test
B24102437-001	Particulate filter C1103506 TSP Pine St	09/21/24 00:00	10/29/24	Air	Metals on air filter by ICP/ICPMS Nitric acid-extraction by 40CFR50G
B24102437-002	Particulate filter C1103507 TSP Pine St	09/15/24 00:00	10/29/24	Air	Same As Above
B24102437-003	Particulate filter C1103508 TSP Walnut St	09/15/24 00:00	10/29/24	Air	Same As Above
B24102437-004	Particulate filter C1103509 TSP Walnut St	09/21/24 00:00	10/29/24	Air	Same As Above
B24102437-005	Particulate filter C1103510 Field Blank	09/25/24 10:46	10/29/24	Air	Same As Above
B24102437-006	Particulate filter C1103511 TSP Pine St	09/27/24 00:00	10/29/24	Air	Same As Above
B24102437-007	Particulate filter C1103512 Lab Blank	09/09/24 17:00	10/29/24	Air	Same As Above
B24102437-008	Particulate filter C1103513 TSP Walnut St	09/27/24 00:00	10/29/24	Air	Same As Above
B24102437-009	Particulate filter C1103514 TSP Walnut St	10/03/24 00:00	10/29/24	Air	Same As Above
B24102437-010	Particulate filter C1103515 TSP Pine St	10/03/24 00:00	10/29/24	Air	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 So. 27th Street, Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

Energy Laboratories, Inc. verifies the reported results for the analysis has been technically reviewed and approved for release.

If you have any questions regarding these test results, please contact your Project Manager.

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

CLIENT: Bison Engineering

Project: Montana Resources/Greely School PW Report Date: 11/12/24

Work Order: B24102437 CASE NARRATIVE

Per client request, results are based on the final concentration using 25 mL of extraction solution per filter.

All "J" qualified analyte concentrations are below the laboratory minimum recommended Reporting Limit (RL) and above the lowest method detection limit (MDL)/Limit of Detection (LOD). Inorganic analytes reported with "J" qualifiers should be verified against the corresponding method blank and continuing calibration blanks. Inorganic "J" quantitations near the MDL/LOD may be suspect due to possible method background levels, sample matrix effects, and/or daily variability in instrument signal-to-noise levels.

Bison Engineering

Client Sample ID: Particulate filter C1103506 TSP Pine St

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24102437-001

Collection Date: 09/21/24 DateReceived: 10/29/24 **Report Date: 11/12/24**

Montana Resources/Greely School PW

Matrix:

Client:

Project:

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	11/11/24 17:16 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 70	194924
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	11/11/24 17:16 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 70	194924
Copper	0.80	ug/filter	J	1.0	0.16	E200.8	11/12/24 11:49 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 271	194924
Lead	0.046	ug/filter	J	1.0	0.042	E200.8	11/12/24 11:49 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 271	194924
Manganese	0.26	ug/filter	J	1.0	0.18	E200.8	11/12/24 11:49 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 271	194924
Molybdenum	0.13	ug/filter	J	1.0	0.0050	E200.8	11/12/24 11:49 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 271	194924
Zinc	0.46	ug/filter	J	1.0	0.30	E200.8	11/12/24 11:49 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 271	194924

Montana Resources/Greely School PW

Bison Engineering

Client Sample ID: Particulate filter C1103507 TSP Pine St

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24102437-002

Collection Date: 09/15/24 DateReceived: 10/29/24

Report Date: 11/12/24

Matrix:

Client:

Project:

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	11/11/24 17:22 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 71	194924
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	11/11/24 17:22 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 71	194924
Copper	1.4	ug/filter		1.0	0.16	E200.8	11/11/24 17:22 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 71	194924
Lead	0.062	ug/filter	J	1.0	0.042	E200.8	11/12/24 11:55 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 272	194924
Manganese	0.36	ug/filter	J	1.0	0.18	E200.8	11/12/24 11:55 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 272	194924
Molybdenum	0.15	ug/filter	J	1.0	0.0050	E200.8	11/12/24 11:55 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 272	194924
Zinc	0.69	ug/filter	J	1.0	0.30	E200.8	11/12/24 11:55 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 272	194924

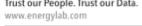
Bison Engineering

Client Sample ID: Particulate filter C1103508 TSP Walnut St

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24102437-003


Collection Date: 09/15/24 DateReceived: 10/29/24 **Report Date: 11/12/24**

Project: Montana Resources/Greely School PW Matrix:

Client:

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	11/11/24 17:28 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_24111	1A:72	194924
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	11/11/24 17:28 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_24111	1A : 72	194924
Copper	0.93	ug/filter	J	1.0	0.16	E200.8	11/12/24 12:01 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 273	194924
Lead	0.061	ug/filter	J	1.0	0.042	E200.8	11/12/24 12:01 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 273	194924
Manganese	0.34	ug/filter	J	1.0	0.18	E200.8	11/12/24 12:01 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 273	194924
Molybdenum	0.054	ug/filter	J	1.0	0.0050	E200.8	11/12/24 12:01 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 273	194924
Zinc	0.49	ug/filter	J	1.0	0.30	E200.8	11/12/24 12:01 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 273	194924

Client Sample ID: Particulate filter C1103509 TSP Walnut St

LABORATORY ANALYTICAL REPORT Prepared by Billings, MT Branch

Lab ID: B24102437-004

Collection Date: 09/21/24 DateReceived: 10/29/24

Report Date: 11/12/24

		Prepared by Billings, MT Br
Client:	Bison Engineering	, , , , ,

Project: Montana Resources/Greely School PW Matrix:

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	11/11/24 17:34 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_2411114	A:73	194924
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	11/11/24 17:34 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_2411114	A:73	194924
Copper	0.30	ug/filter	J	1.0	0.16	E200.8	11/12/24 12:06 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 274	194924
Lead	ND	ug/filter		1.0	0.042	E200.8	11/11/24 17:34 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111/	A:73	194924
Manganese	0.26	ug/filter	J	1.0	0.18	E200.8	11/12/24 12:06 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 274	194924
Molybdenum	0.020	ug/filter	J	1.0	0.0050	E200.8	11/12/24 12:06 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 274	194924
Zinc	0.35	ug/filter	J	1.0	0.30	E200.8	11/12/24 12:06 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 274	194924

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24102437-005

Collection Date: 09/25/24 10:46

DateReceived: 10/29/24

Montana Resources/Greely School PW

Bison Engineering

Client Sample ID: Particulate filter C1103510 Field Blank

Matrix:

Client:

Project:

Report Date: 11/12/24

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	11/11/24 17:40 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 74	194924
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	11/11/24 17:40 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 74	194924
Copper	0.21	ug/filter	J	1.0	0.16	E200.8	11/12/24 12:12 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 275	194924
Lead	ND	ug/filter		1.0	0.042	E200.8	11/11/24 17:40 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 74	194924
Manganese	ND	ug/filter		1.0	0.18	E200.8	11/11/24 17:40 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 74	194924
Molybdenum	0.0078	ug/filter	J	1.0	0.0050	E200.8	11/12/24 12:12 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_2411114	: 275	194924
Zinc	ND	ug/filter		1.0	0.30	E200.8	11/11/24 17:40 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 74	194924

www.energylab.com

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24102437-006

Client Sample ID: Particulate filter C1103511 TSP Pine St Montana Resources/Greely School PW

Bison Engineering

Collection Date: 09/27/24 DateReceived: 10/29/24

Matrix:

Client:

Project:

Report Date: 11/12/24

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	11/11/24 17:46 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 75	194924
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	11/11/24 17:46 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_2411114	: 75	194924
Copper	1.9	ug/filter		1.0	0.16	E200.8	11/11/24 17:46 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 75	194924
Lead	0.12	ug/filter	J	1.0	0.042	E200.8	11/12/24 12:18 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	276	194924
Manganese	0.42	ug/filter	J	1.0	0.18	E200.8	11/12/24 12:18 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	276	194924
Molybdenum	0.39	ug/filter	J	1.0	0.0050	E200.8	11/12/24 12:18 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	276	194924
Zinc	0.74	ug/filter	J	1.0	0.30	E200.8	11/12/24 12:18 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	276	194924

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24102437-007 Collection Date: 09/09/24 17:00

DateReceived: 10/29/24 **Report Date: 11/12/24**

Client Sample ID: Particulate filter C1103512 Lab Blank Montana Resources/Greely School PW

Bison Engineering

Matrix:

Client:

Project:

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	11/11/24 17:51 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	IA:76	194924
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	11/11/24 17:51 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	IA:76	194924
Copper	ND	ug/filter		1.0	0.16	E200.8	11/11/24 17:51 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	IA:76	194924
Lead	ND	ug/filter		1.0	0.042	E200.8	11/11/24 17:51 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	IA:76	194924
Manganese	ND	ug/filter		1.0	0.18	E200.8	11/11/24 17:51 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	IA:76	194924
Molybdenum	ND	ug/filter		1.0	0.0050	E200.8	11/11/24 17:51 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	IA:76	194924
Zinc	ND	ug/filter		1.0	0.30	E200.8	11/11/24 17:51 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	IA: 76	194924

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 • Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24102437-008

Collection Date: 09/27/24 DateReceived: 10/29/24 Report Date: 11/12/24

onom oumpro is:	Tartioulate inter-errore ref. Wallac
Project:	Montana Resources/Greely School PW
Matrix:	Air

Client:

Bison Engineering

Client Sample ID: Particulate filter C1103513 TSP Walnut St

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	11/11/24 18:09 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	IA:79	194924
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	11/11/24 18:09 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	IA:79	194924
Copper	0.80	ug/filter	J	1.0	0.16	E200.8	11/12/24 12:36 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111/	A : 279	194924
Lead	0.12	ug/filter	J	1.0	0.042	E200.8	11/12/24 12:36 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111/	A : 279	194924
Manganese	0.41	ug/filter	J	1.0	0.18	E200.8	11/12/24 12:36 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111/	A : 279	194924
Molybdenum	0.40	ug/filter	J	1.0	0.0050	E200.8	11/12/24 12:36 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111/	A : 279	194924
Zinc	0.75	ug/filter	J	1.0	0.30	E200.8	11/12/24 12:36 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111/	A : 279	194924

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24102437-009

Collection Date: 10/03/24 DateReceived: 10/29/24

Report Date: 11/12/24

Client:	Bison Engineering
Client Sample ID:	Particulate filter C1103514 TSP Walnut St

Project: Montana Resources/Greely School PW

Matrix: Air

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	11/12/24 16:09 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 315	194924
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	11/12/24 16:09 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 315	194924
Copper	1.5	ug/filter		1.0	0.16	E200.8	11/11/24 18:15 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_24111	1A : 80	194924
Lead	0.11	ug/filter	J	1.0	0.042	E200.8	11/12/24 12:42 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A: 280	194924
Manganese	4.1	ug/filter		1.0	0.18	E200.8	11/11/24 18:15 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_24111	1A : 80	194924
Molybdenum	0.034	ug/filter	J	1.0	0.0050	E200.8	11/12/24 12:42 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A: 280	194924
Zinc	1.3	ug/filter		1.0	0.30	E200.8	11/11/24 18:15 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_24111	1A:80	194924

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 • Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Lab ID: B24102437-010

Collection Date: 10/03/24 DateReceived: 10/29/24 **Report Date: 11/12/24**

Client Sample ID: Particulate filter C1103515 TSP Pine St Montana Resources/Greely School PW

Bison Engineering

Matrix:

Client:

Project:

Analyses	Result	Units	QUAL	RL	MDL	Method	Analysis Date / By	Prep Date	Prep Method	RunID	Run Order	BatchID
METALS IN AIR												
Arsenic	ND	ug/filter		1.0	0.058	E200.8	11/11/24 18:21 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 81	194924
Cadmium	ND	ug/filter		1.0	0.0063	E200.8	11/11/24 18:21 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 81	194924
Copper	1.7	ug/filter		1.0	0.16	E200.8	11/11/24 18:21 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111	A : 81	194924
Lead	0.12	ug/filter	J	1.0	0.042	E200.8	11/12/24 12:47 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 281	194924
Manganese	0.65	ug/filter	J	1.0	0.18	E200.8	11/12/24 12:47 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 281	194924
Molybdenum	0.078	ug/filter	J	1.0	0.0050	E200.8	11/12/24 12:47 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 281	194924
Zinc	1.0	ug/filter	J	1.0	0.30	E200.8	11/12/24 12:47 / jks	11/08/24 11:48	40CFR50	ICPMS207-B_241111A	: 281	194924

Prepared by Billings, MT Branch

Work Order: B24102437 Report Date: 11/12/24

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method:	E200.8							Analytic	cal Run: ICPMS207-B	_241111A
Lab ID:	QCS	7 Initi	al Calibration	on Verificat	tion Standard				11/11	/24 12:46
Arsenic			0.0482	mg/L	0.0050	96	90	110		
Cadmium			0.0240	mg/L	0.0010	96	90	110		
Copper			0.0503	mg/L	0.010	101	90	110		
Lead			0.0521	mg/L	0.0010	104	90	110		
Manganes	se		0.243	mg/L	0.0050	97	90	110		
Molybdeni	um		0.0468	mg/L	0.0050	94	90	110		
Zinc			0.0498	mg/L	0.0050	100	90	110		
Lab ID:	CCV	7 Cor	ntinuing Cal	ibration Ve	erification Standa	rd			11/11	/24 16:35
Arsenic			0.0480	mg/L	0.0050	96	90	110		
Cadmium			0.0471	mg/L	0.0010	94	90	110		
Copper			0.0495	mg/L	0.010	99	90	110		
Lead			0.0486	mg/L	0.0010	97	90	110		
Manganes	se		0.0483	mg/L	0.0050	97	90	110		
Molybdeni	um		0.0466	mg/L	0.0050	93	90	110		
Zinc			0.0495	mg/L	0.0050	99	90	110		
Lab ID:	CCV	7 Cor	ntinuing Cal	ibration Ve	erification Standa	rd			11/11	/24 17:57
Arsenic			0.0477	mg/L	0.0050	95	90	110		
Cadmium			0.0470	mg/L	0.0010	94	90	110		
Copper			0.0495	mg/L	0.010	99	90	110		
Lead			0.0487	mg/L	0.0010	97	90	110		
Manganes	se		0.0485	mg/L	0.0050	97	90	110		
Molybden	um		0.0464	mg/L	0.0050	93	90	110		
Zinc			0.0486	mg/L	0.0050	97	90	110		
Lab ID:	QCS	7 Initi	al Calibration	on Verificat	tion Standard				11/12	/24 04:52
Arsenic			0.0494	mg/L	0.0050	99	90	110		
Cadmium			0.0254	mg/L	0.0010	102	90	110		
Copper			0.0512	mg/L	0.010	102	90	110		
Lead			0.0490	mg/L	0.0010	98	90	110		
Manganes	se		0.248	mg/L	0.0050	99	90	110		
Molybdeni	um		0.0498	mg/L	0.0050	100	90	110		
Zinc			0.0510	mg/L	0.0050	102	90	110		
Lab ID:	CCV	7 Cor	ntinuing Cal	ibration Ve	erification Standa	rd			11/12	/24 11:08
Arsenic			0.0486	mg/L	0.0050	97	90	110		
Cadmium			0.0488	mg/L	0.0010	98	90	110		
Copper			0.0501	mg/L	0.010	100	90	110		
Lead			0.0483	mg/L	0.0010	97	90	110		
Manganes	se		0.0487	mg/L	0.0050	97	90	110		
Molybdeni	um		0.0489	mg/L	0.0050	98	90	110		
Zinc			0.0500	mg/L	0.0050	100	90	110		
Lab ID:	CCV	7 Cor	ntinuing Cal	ibration Ve	erification Standa	rd			11/12	/24 12:24
Arsenic			0.0491	mg/L	0.0050	98	90	110		
Cadmium			0.0493	mg/L	0.0010	99	90	110		

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Billings, MT Branch

Work Order: B24102437 Report Date: 11/12/24

Analyte		Count I	Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method:	E200.8							Analytic	al Run: ICPMS207-B	_241111/
Lab ID:	CCV	7 Contin	uing Ca	libration Verifi	cation Standa	rd			11/12/	/24 12:24
Copper		(0.0511	mg/L	0.010	102	90	110		
Lead		(0.0487	mg/L	0.0010	97	90	110		
Manganes	se .	(0.0492	mg/L	0.0050	98	90	110		
Molybdenu	um	(0.0488	mg/L	0.0050	98	90	110		
Zinc		(0.0509	mg/L	0.0050	102	90	110		
Lab ID:	QCS	7 Initial	Calibrati	on Verification	Standard				11/12/	24 15:28
Arsenic		(0.0513	mg/L	0.0050	103	90	110		
Cadmium		(0.0262	mg/L	0.0010	105	90	110		
Copper		(0.0537	mg/L	0.010	107	90	110		
Lead		(0.0488	mg/L	0.0010	98	90	110		
Manganes	e		0.264	mg/L	0.0050	106	90	110		
Molybdenu	um	(0.0503	mg/L	0.0050	101	90	110		
Zinc		(0.0530	mg/L	0.0050	106	90	110		
Lab ID:	ccv	7 Contin	uing Ca	ibration Verifi	cation Standa	·d			11/12/	24 15:39
Arsenic		(0.0510	mg/L	0.0050	102	90	110		
Cadmium		(0.0507	mg/L	0.0010	101	90	110		
Copper		(0.0518	mg/L	0.010	104	90	110		
Lead		(0.0478	mg/L	0.0010	96	90	110		
Manganes	e	(0.0513	mg/L	0.0050	103	90	110		
Molybdenu	um	(0.0507	mg/L	0.0050	101	90	110		
Zinc		(0.0510	mg/L	0.0050	102	90	110		
Method:	E200.8								Batcl	h: 194924
Lab ID:	MB-194924	7 Metho	d Blank				Run: ICPMS	S207-B_241111	A 11/11/	24 16:53
Arsenic			ND	ug/filter	0.06					
Cadmium			ND	ug/filter	0.006					
Copper			ND	ug/filter	0.2					
Lead			ND	ug/filter	0.04					
Manganes	e		ND	ug/filter	0.2					
Molybdenu	um		0.007	ug/filter	0.005					
Zinc			ND	ug/filter	0.3					
Lab ID:	LCS-194924	7 Labora	atory Co	ntrol Sample			Run: ICPMS	S207-B_241111	A 11/11/	/24 16:59
Arsenic			99.1	ug/filter	1.0	99	85	115		
Cadmium			48.9	ug/filter	1.0	98	85	115		
Copper			104	ug/filter	5.0	104	85	115		
Lead			101	ug/filter	1.0	101	85	115		
Manganes	e		520	ug/filter	5.0	104	85	115		
Molybdenu			96.8	ug/filter	1.0	97	85	115		
Zinc			103	ug/filter	5.0	103	85	115		
Lab ID:	LCSD-194924	7 Labora	atory Co	ntrol Sample	Duplicate		Run: ICPMS	S207-B_241111	A 11/11/	/24 17:05
			102	ug/filter	1.0	102	85	115		
Arsenic										

Qualifiers:

RL - Analyte Reporting Limit

Report Date: 11/12/24

Work Order: B24102437

QA/QC Summary Report

Prepared by Billings, MT Branch

Analyte Count Result Units RL %REC Low Limit High Limit RPD RPDLimit Qual Method: E200.8 Batch: 194924 Lab ID: LCSD-194924 7 Laboratory Control Sample Duplicate Run: ICPMS207-B_241111A 11/11/24 17:05 ug/filter 106 106 Copper 5.0 85 115 Lead 100 ug/filter 1.0 100 85 115 537 ug/filter 85 Manganese 5.0 107 115 Molybdenum 97.3 ug/filter 97 85 115 1.0 Zinc 107 ug/filter 5.0 107 85 115 Run: ICPMS207-B_241111A 11/12/24 11:43

Lab ID:	MB-194924	7 Method Blank		
Arsenic		ND	ug/filter	0.06
Cadmium		ND	ug/filter	0.006
Copper		ND	ug/filter	0.2
Lead		ND	ug/filter	0.04
Manganes	е	ND	ug/filter	0.2
Molybdenu	ım	ND	ug/filter	0.005
Zinc		ND	ug/filter	0.3

Qualifiers:

RL - Analyte Reporting Limit

Work Order Receipt Checklist

Bison Engineering

B24102437

Login completed by:	Danielle N. Harris		Date F	Received: 10/29/2024
Reviewed by:	tjones		Rec	eived by: CMJ
Reviewed Date:	10/30/2024		Carr	ier name: Hand Deliver
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present
Custody seals intact on all sh	nipping container(s)/cooler(s)?	Yes	No 🗌	Not Present ✓
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?		Yes ✓	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes ✓	No 🗌	
Chain of custody agrees with	sample labels?	Yes ✓	No 🗌	
Samples in proper container/	/bottle?	Yes ✓	No 🗌	
Sample containers intact?		Yes ✓	No 🗌	
Sufficient sample volume for	indicated test?	Yes ✓	No 🗌	
All samples received within h (Exclude analyses that are co such as pH, DO, Res Cl, Su	onsidered field parameters	Yes ✓	No 🗌	
Temp Blank received in all sl	nipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Applicable
Container/Temp Blank tempe	erature:	2.1°C Blue Ice		
Containers requiring zero heabubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Trip Blanks and/or Blind Duplicate samples are assigned the earliest collection time for the associated requested analysis in order to evaluate the holding time unless specifically indicated.

Contact and Corrective Action Comments:

None

Laboratory Certifications and Accreditations

Current certificates are available at www.energylab.com website:

	Agency	Number
	Alaska	17-023
	California	3087
	Colorado	MT00005
	Department of Defense (DoD)/ISO17025	ADE-2588
Billings, MT	Florida (Primary NELAP)	E87668
	Idaho	MT00005
d	Louisiana	05079
ANAB	Montana	CERT0044
ANSI National Accreditation Board ACCREDITED	Nebraska	NE-OS-13-04
TESTING LABORATORY	Nevada	NV-C24-00250
ACCRE	North Dakota	R-007
ALL THE STREET	National Radon Proficiency	109383-RMP
TNI	Oregon	4184
BORATON	South Dakota	ARSD 74:04:07
	Texas	TX-C24-00302
	US EPA Region VIII	Reciprocal
	USDA Soil Permit	P330-20-00170
	Washington	C1039
	Alaska	20-006
	California	3021
	Colorado	WY00002
	Florida (Primary NELAP)	E87641
	Idaho	WY00002
Casper, WY	Louisiana	05083
cusper, vv i	Montana	CERT0002
WAS ACCREDING	Nebraska	NE-OS-08-04
TNI	Nevada	NV-C24-00245
LABORATORY.	North Dakota	R-125
	Oregon	WY200001
	South Dakota	WY00002
	Texas	T104704181-23-21
	US EPA Region VIII	WY00002
	USNRC License	49-26846-01
	Washington	C1012
Gillette, WY	US EPA Region VIII	WY00006
	Colorado	MT00945
Helena, MT	Montana	CERT0079
	Nevada	NV-C24-00119
	US EPA Region VIII	Reciprocal
	USDA Soil Permit	P330-20-00090

Chain of Custody & Analytical Request Record

www.energylab.com

of

Page__

Account Int	Account Information (Billing information)	ormation)			Report Information	Report Information (if different than Account Information)	Comments	
Company/Name	Company/Name Bison Engineering, Inc.	Inc.			Company/Name Bison Engineering, Inc.	ineering, Inc.		
Contact	Shelley Argott-Brown	'n			Contact Don Milmine	ne		
Phone	(406) 442-5768				Phone (406) 208-4833	4833	Analyze per history	
Mailing Address	Mailing Address 3143 E Lyndale Avenue	anne			Mailing Address 2751 Enterprise Avenue Suite 2	rprise Avenue Suite 2		
City, State, Zip	City, State, Zip Helena MT, 59601				City, State, Zip Billings, MT 59102	T 59102		
Email	sbrown-argott@bison-eng.com	on-eng.com			Email dmilmine@	dmilmine@bison-eng.com		
Receive Invoice	Receive Invoice	Receive Repor	Receive Report	D Email	Receive Report DHard Copy DEmail	© Email		
Purchase Order MTR224018	Quote		Bottle Order		Special Report/Formats:	Special Report/Formats:		
Project Information	rmation				Matrix Codes	Analysis Requested		
Project Name, PV	Project Name, PWSID, Permit, etc. Momtana Resources/Greely School	ana Resource	s/Greely Scho	WA loc	A- Air	posponhou post	All turnaround times are	les are
Sampler Name		Sampler Phone			W- Water S Soils/		standard unless marked as RUSH.	arked as
					Solids		Energy aboratories	orios

		All turnaround times are	standard unless marked as RUSH.	Energy Laboratories MUST be contacted prior to	RUSH sample submittal for charges and scheduling – See Instructions Page	ELI LAB ID	TAT Laboratory Use Only	1524102437										Signature
					ttached													S
								ж.	8									Date/Time
0	rested	_				ou		×	×	×	×	×	×	×	×	×	×	۵
	Analysis Requested				lesse	egne		×	×	×	×	×	×	×	×	×	×	
	Analys					pee		×	×	×	×	×	×	×	×	×	×	nt)
					ر	əddo	0	×	×	×	×	×	×	×	×	×	×	Received by (print)
					un	imbs	၁	×	×	×	×	×	×	×	×	×	×	Rece
						Inesti	A	×	×	×	×	×	×	×	×	×	×	mit the
	Matrix Codes	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Water Soils/	Vegetation	Bioassay Other Drinking Water	Matrix	Above)	fitter	on Tetlon filter	ON TOPICE CITTOR	on letton	or letter	CX Jetter	a Tetton	on Tetlon	on Tetton filter	Sister Sister	11:0
	Matri		, 'n	>	B- OV-	Number of	Contamers	_	-	1	-	-	-	-	-	-	-	the 7
		chool PW		Yes DNo	3 ation)	Collection	Fime 2 4 by	Composite	24 thr	24 hr	Composite	1046	24 ho	1700	composite	zut'hr. te	A	Signe
		es/Greely S			ORE SENDING	Col	Date	t 9/21/24	t 9/15/24	t 9/15/24	t 9/21/24	9/25/24	t 9/27/24	9/9/24	9/27/24	10/3/24	10/3/24	Date/Fine / 105
		ana Resourc	Sampler Phone	EPA/State Compliance	sample type. ed) **CALL BEF(Ę.		ISP Pine S	TSP Pine S	SP Walnut S	SP Walnut St	Field Blank	TSP Pine S	Lab Blank	P Walnut St	P Walnut ST	SP Pine ST	
200-000 B	mation	Project Name, PWSID, Permit, etc. Momtana Resources/Greely School PW		e Montana	URANIUM MINING CLIENTS MUST indicate sample type. IN NOT Source or Byproduct Material Source/Processed Ore (Ground or Refined) **CALL BEFORE SENDING 11e.(2) Byproduct Material (Can ONLY be Submitted to ELI Casper Location	Sample Identification	Name, Location, Interval, etc.)	Particulate filter C1103506 1SP Pine St 9/21/24	Particulate filter C1103507 TSP Pine St 9/15/24	Particulate filter C1103508 TSP Walnut St 9/15/24	Particulate filter C1103509 TSP Walnut St 9/21/24	Particulate filter C1103510 Field Blank 9/25/24	Particulate filter C1103511 TSP Pine St 9/27/24	Particulate filter C1103512 Lab Blank	Particulate filter C1103513 TSP Walnut St 9/27/24	Particulate filter C1103514 TSP Walnut ST 10/3/24	10 Particulate filter C1103515 TSP Pine ST 10/3/24	Relinquished by (print)
	Project Information	Project Name, PW	Sampler Name	Sample Origin State Montana	URANIUM MINING CLIENTS MUST ind NOT Source or Byproduct Material Source/Processed Ore (Ground or 116.(2) Byproduct Material (Can Of	Sa	<u>ج</u> ا	1 Particulate	2 Particulate	3 Particulate f	4 Particulate f	5 Particulate	6 Particulate	7 Particulate	8 Particulate f	9 Particulate f	10 Particulate	Custody Re

be signed Relinquished by (print) Date/Time Shipped By Cooler ID(s) Custody Seals Infact	Signature	V. Milming	Received by (print)	Date/Time Si	Signature
Cooler ID(s) Custody Seals 1			Received by Laboratory (print)	Date/Ilms/14 (CSV Si	ignature of the
Cooler ID(s) Custody Seals		LABORATORY USE ONLY	ONLY		11/1/11
X N C B	Receipt Temp T	Temp Blank On Ice	Payment Type CC Cash Check	Amount Receipt M	t Mumber (cash/check only)

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-10/18 v.3

APPENDIX C: LABORATORY ANALYSIS REPORTS - DUSTFALL

ANALYTICAL SUMMARY REPORT

August 21, 2024

H24080038-004

Bison Engineering 3143 E Lyndale Ave Helena, MT 59601-6401

Work Order: H24080038 Quote ID: H16951

Project Name: Montana Resources Dustfall

DF-FB-012

Energy Laboratories Inc Helena MT received the following 4 samples for Bison Engineering on 8/1/2024 for analysis. Lab ID Client Sample ID Collect Date Receive Date Matrix Test Metals by ICP/ICPMS, Total H24080038-001 DF-GREELEY-012 07/30/24 10:08 08/01/24 Solid Total Metals Digestion by SW3050B Soil Preparation USDA1 Soil Parameters H24080038-002 DF-PINE-012 08/01/24 Solid Metals by ICP/ICPMS, Total 07/30/24 10:20 Total Metals Digestion by SW3050B Soil Parameters H24080038-003 DF-WALNUT-012 07/30/24 10:47 08/01/24 Solid Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

08/01/24

Solid

Same As Above

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

Energy Laboratories, Inc. verifies the reported results for the analysis has been technically reviewed and approved for release.

If you have any questions regarding these test results, please contact your Project Manager.

07/30/24 10:49

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

CLIENT: Bison Engineering

Project: Montana Resources Dustfall Report Date: 08/21/24

Work Order: H24080038 CASE NARRATIVE

All "J" qualified analyte concentrations are below the laboratory minimum recommended Reporting Limit (RL) and above the calculated method detection limit (MDL). Inorganic analytes reported with "J" qualifiers should be verified against the corresponding method blank and continuing calibration blanks. Inorganic "J" quantitations near the MDL may be suspect due to possible method background levels, sample matrix effects, and/or daily variability in instrument signal-to-noise levels.

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Bison Engineering
Project: Montana Resources Dustfall

Lab ID: H24080038-001
Client Sample ID: DF-GREELEY-012

DateReceived: 08/01/24

Matrix: Solid

Report Date: 08/21/24

Collection Date: 07/30/24 10:08

			MCL/	
Analyses	Result Units	Qualifiers RL	QCL Method	Analysis Date / By
PHYSICAL CHARACTERISTICS				
Dry Wt, g	0.1202 g	0.00010	USDA1	08/06/24 13:53 / kjb
Wet Wt, g	410.52 g	0.00010	USDA1	08/06/24 13:53 / kjb
METALS, TOTAL - EPA SW846				
Arsenic	31 mg/kg	3	SW6020	08/15/24 18:23 / dck
Cadmium	2 mg/kg	1	SW6020	08/15/24 18:23 / dck
Copper	2380 mg/kg	2	SW6020	08/15/24 18:23 / dck
_ead	129 mg/kg	2	SW6020	08/15/24 18:23 / dck
Manganese	581 mg/kg	2	SW6020	08/15/24 18:23 / dck
Molybdenum	2990 mg/kg	1	SW6020	08/15/24 18:23 / dck
Zinc	543 mg/kg	8	SW6020	08/15/24 18:23 / dck

Report RL - Analyte Reporting Limit Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Report Date: 08/21/24

Matrix: Solid

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Bison Engineering Montana Resources Dustfall **Project:**

Collection Date: 07/30/24 10:20 Lab ID: H24080038-002 DateReceived: 08/01/24 Client Sample ID: DF-PINE-012

MCL/ **Result Units** Qualifiers QCL **Analyses** RL Method Analysis Date / By PHYSICAL CHARACTERISTICS Dry Wt, q 0.1254 g 0.00010 USDA1 08/06/24 13:53 / kjb Wet Wt, g 429.12 g 0.00010 USDA1 08/06/24 13:53 / kjb **METALS, TOTAL - EPA SW846** 34 mg/kg 2 SW6020 08/15/24 18:30 / dck Arsenic Cadmium 3 mg/kg 1 SW6020 08/15/24 18:30 / dck 2 Copper 4000 mg/kg SW6020 08/15/24 18:30 / dck 2 132 mg/kg SW6020 08/15/24 18:30 / dck Lead 569 mg/kg 2 Manganese SW6020 08/15/24 18:30 / dck Molybdenum 3900 mg/kg 1 SW6020 08/15/24 18:30 / dck Zinc 724 mg/kg 7 SW6020 08/15/24 18:30 / dck

Report RL - Analyte Reporting Limit **Definitions:** QCL - Quality Control Limit

MCL - Maximum Contaminant Level

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Bison Engineering

Report Date: 08/21/24 Montana Resources Dustfall Project: **Collection Date:** 07/30/24 10:47 Lab ID: H24080038-003 DateReceived: 08/01/24

Client Sample ID: DF-WALNUT-012 Matrix: Solid

					MCL/		
analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Pry Wt, g	0.1846	g		0.00010		USDA1	08/06/24 13:53 / kjb
Vet Wt, g	528.06	g		0.00010		USDA1	08/06/24 13:53 / kjb
METALS, TOTAL - EPA SW846							
rsenic	27	mg/kg		2		SW6020	08/15/24 18:33 / dck
Cadmium	2	mg/kg		1		SW6020	08/15/24 18:33 / dck
Copper	1420	mg/kg		1		SW6020	08/15/24 18:33 / dck
ead	90	mg/kg		1		SW6020	08/15/24 18:33 / dck
/langanese	511	mg/kg		1		SW6020	08/15/24 18:33 / dck
Nolybdenum	722	mg/kg		1		SW6020	08/15/24 18:33 / dck
linc	413	mg/kg		5		SW6020	08/15/24 18:33 / dck

RL - Analyte Reporting Limit Report

Definitions: QCL - Quality Control Limit MCL - Maximum Contaminant Level

Report Date: 08/21/24

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Bison Engineering

Project: Montana Resources Dustfall Collection Date: 07/30/24 10:49 Lab ID: H24080038-004 DateReceived: 08/01/24

Client Sample ID: DF-FB-012 Matrix: Solid

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Dry Wt, g	0.00	g		0.00010		USDA1	08/06/24 13:53 / kjb
Wet Wt, g	356.91	g		0.00010		USDA1	08/06/24 13:53 / kjb
METALS, TOTAL - EPA SW846							
Arsenic	ND	mg/kg		1		SW6020	08/15/24 18:36 / dck
Cadmium	ND	mg/kg		1		SW6020	08/15/24 18:36 / dck
Copper	0.5	mg/kg	J	1		SW6020	08/15/24 18:36 / dck
Lead	ND	mg/kg		1		SW6020	08/15/24 18:36 / dck
Manganese	0.4	mg/kg	J	1		SW6020	08/15/24 18:36 / dck
Molybdenum	0.2	mg/kg	J	1		SW6020	08/15/24 18:36 / dck
Zinc	ND	mg/kg		1		SW6020	08/15/24 18:36 / dck

Report RL - Analyte Reporting Limit Definitions: QCL - Quality Control Limit

J - Estimated value - analyte was present but less than the

Reporting Limit (RL)

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: Bison Engineering Work Order: H24080038 Report Date: 08/21/24

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD F	RPDLimit	Qual
Method:	SW6020							Analytic	al Run: ICF	PMS206-H_	_240815B
Lab ID:	ICV	7 Initial	Calibration	on Verifica	tion Standard					08/15/	24 11:56
Arsenic			0.0609	mg/L	0.0010	101	90	110			
Cadmium			0.0311	mg/L	0.0010	104	90	110			
Copper			0.0626	mg/L	0.0010	104	90	110			
Lead			0.0600	mg/L	0.0010	100	90	110			
Manganes	se		0.306	mg/L	0.0010	102	90	110			
Molybden	um		0.0596	mg/L	0.0010	99	90	110			
Zinc			0.0614	mg/L	0.0010	102	90	110			
Lab ID:	ICSA	7 Interfe	erence C	heck Samp	ole A					08/15/	24 12:06
Arsenic			ND	mg/L	0.0010						
Cadmium			ND	mg/L	0.0010						
Copper			ND	mg/L	0.0010						
Lead			ND	mg/L	0.0010						
Manganes	se		ND	mg/L	0.0010		0	0			
Molybden	um		0.855	mg/L	0.0010	107	70	130			
Zinc			ND	mg/L	0.0010						
Lab ID:	ICSAB	7 Interfe	erence C	heck Samp	ole AB					08/15/	24 12:12
Arsenic			0.0105	mg/L	0.0010	105	70	130			
Cadmium			0.0102	mg/L	0.0010	102	70	130			
Copper			0.0199	mg/L	0.0010	99	70	130			
Lead			ND	mg/L	0.0010		0	0			
Manganes	se		0.0208	mg/L	0.0010	104	70	130			
Molybden	um		0.858	mg/L	0.0010	107	70	130			
Zinc			0.0117	mg/L	0.0010	117	70	130			
Lab ID:	CCV	7 Contir	nuing Cal	libration Ve	erification Standa	rd				08/15/	24 18:10
Arsenic			0.0486	mg/L	0.0010	97	90	110			
Cadmium			0.0494	mg/L	0.0010	99	90	110			
Copper			0.0491	mg/L	0.0010	98	90	110			
Lead			0.0466	mg/L	0.0010	93	90	110			
Manganes	se		0.0488	mg/L	0.0010	98	90	110			
Molybden	um		0.0487	mg/L	0.0010	97	90	110			
Zinc			0.0501	mg/L	0.0010	100	90	110			
Method:	SW6020									Bate	ch: 73232
Lab ID:	MB-73232	7 Metho	d Blank				Run: ICPM	S206-H_240815	5B	08/15/	24 18:17
Arsenic			ND	mg/kg	0.3						
Cadmium			ND	mg/kg	0.01						
Copper			ND	mg/kg	0.3						
Lead			ND	mg/kg	0.2						
Manganes	se		ND	mg/kg	0.2						
Molybden			ND	mg/kg	0.1						
Zinc			ND	mg/kg	0.9						

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: Bison Engineering Work Order: H24080038 Report Date: 08/21/24

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020									Bat	ch: 73232
Lab ID:	LCS-73232	7 Lab	oratory Cor	ntrol Sample			Run: ICPM	S206-H_240815	В	08/15/	24 18:20
Arsenic			159	mg/kg	1.0	81	66.4	104			
Cadmium			99.4	mg/kg	1.0	100	79.2	121			
Copper			120	mg/kg	1.0	88	73.9	113			
Lead			98.9	mg/kg	1.0	94	71.6	128			
Manganes	se		400	mg/kg	1.0	92	74.4	123			
Molybden	um		118	mg/kg	1.0	93	61.3	124			
Zinc			225	mg/kg	1.9	98	83.1	125			
Lab ID:	H24080038-001ADIL	7 Sei	rial Dilution				Run: ICPMS	S206-H_240815	В	08/15/	24 18:26
Arsenic			32.9	mg/kg	13		0	0		10	N
Cadmium			2.47	mg/kg	1.0		0	0		10	N
Copper			2360	mg/kg	11		0	0	0.7	10	
Lead			141	mg/kg	8.3		0	0	8.5	10	
Manganes	se		623	mg/kg	10		0	0	7.1	10	
Molybden	um		2820	mg/kg	4.6		0	0	5.8	10	
Zinc			593	mg/kg	39		0	0	8.7	10	
Lab ID:	LFB-73232	7 Lab	oratory For	tified Blank			Run: ICPMS	S206-H_240815	В	08/15/	24 18:39
Arsenic			24.0	mg/kg	1.0	96	80	120			
Cadmium			13.1	mg/kg	1.0	105	80	120			
Copper			24.2	mg/kg	1.0	97	80	120			
Lead			24.9	mg/kg	1.0	100	80	120			
Manganes	se		117	mg/kg	1.0	94	80	120			
Molybden	um		25.1	mg/kg	1.0	101	80	120			
Zinc			23.4	mg/kg	1.0	93	80	120			
Lab ID:	LFBD-73232	7 Lat	oratory For	tified Blank D	Ouplicate		Run: ICPMS	S206-H_240815	В	08/15/	24 18:43
Arsenic			23.6	mg/kg	1.0	94	80	120	1.6	20	
Cadmium			13.0	mg/kg	1.0	104	80	120	0.5	20	
Copper			23.7	mg/kg	1.0	95	80	120	1.9	20	
Lead			25.2	mg/kg	1.0	101	80	120	1.0	20	
Manganes	se		116	mg/kg	1.0	92	80	120	1.6	20	
Molybden	um		24.8	mg/kg	1.0	99	80	120	1.2	20	
Zinc			23.0	mg/kg	1.0	92	80	120	1.6	20	
Lab ID:	H24080038-001AMS	7 Sai	mple Matrix	Spike			Run: ICPMS	S206-H_240815	В	08/15/	24 18:46
Arsenic			108	mg/kg	2.5	93	75	125			
Cadmium			87.4	mg/kg	1.0	102	75	125			
Copper			2450	mg/kg	2.1		75	125			Α
Lead			221	mg/kg	1.7	111	75	125			
Manganes	se		664	mg/kg	2.0		75	125			Α
Molybden	um		3080	mg/kg	1.0		75	125			Α
Zinc			629	mg/kg	7.8		75	125			Α
Lab ID:	H24080038-001AMSD	7 Sai	mple Matrix	Spike Duplic	ate		Run: ICPMS	S206-H_240815	В	08/15/	24 18:49
Arsenic			107	mg/kg	2.5	92	75	125	8.0	20	
Cadmium			86.0	mg/kg	1.0	101	75	125	1.6	20	

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

A - Analyte level was greater than four times the spike level - in accordance with the method, percent recovery is not calculated N - Analyte concentration was not sufficiently high to calculate a Relative Percent Difference (RPD) for the serial dilution test

Prepared by Helena, MT Branch

Bison Engineering Client: Work Order: H24080038 **Report Date:** 08/21/24

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW6020								Bato	h: 73232
Lab ID: H24080038-001AMSE	7 Sample Matrix	Spike Duplicate		ı	Run: ICPMS	S206-H_240815B		08/15/2	24 18:49
Copper	2420	mg/kg	2.1		75	125	1.2	20	Α
Lead	214	mg/kg	1.7	102	75	125	3.4	20	
Manganese	652	mg/kg	2.0		75	125	1.8	20	Α
Molybdenum	3030	mg/kg	1.0		75	125	1.4	20	Α
Zinc	612	mg/kg	7.8		75	125	2.8	20	Α

Qualifiers:

RL - Analyte Reporting Limit

A - Analyte level was greater than four times the spike level - in accordance with the method, percent recovery is not calculated

Login completed by: Rebecca A. Tooke

Work Order Receipt Checklist

Bison Engineering

H24080038

Date Received: 8/1/2024

Reviewed by:	wjohnson		Red	eived by: WJJ
Reviewed Date:	8/5/2024		Carr	ier name: Hand Deliver
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present
Custody seals intact on all sl	nipping container(s)/cooler(s)?	Yes	No 🗌	Not Present 🗹
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present 🗹
Chain of custody present?		Yes √	No 🗌	
Chain of custody signed who	en relinquished and received?	Yes √	No 🗌	
Chain of custody agrees with	sample labels?	Yes √	No 🗌	
Samples in proper container	/bottle?	Yes √	No 🗌	
Sample containers intact?		Yes 🗸	No 🗌	
Sufficient sample volume for	indicated test?	Yes 🗸	No 🗌	
All samples received within h (Exclude analyses that are c such as pH, DO, Res Cl, Su	onsidered field parameters	Yes ✓	No 🗌	
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
Container/Temp Blank tempe	erature:	33.1°C No Ice		
Containers requiring zero he bubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Trip Blanks and/or Blind Duplicate samples are assigned the earliest collection time for the associated requested analysis in order to evaluate the holding time unless specifically indicated.

Contact and Corrective Action Comments:

The collection date/time is not indicated on the containers. Proceeded with the collection date/time as indicated on the chain of custody. 8/1/24 rt

ENERGY (3)

Trust our People. Trust our Data.

Chain of Custody & Analytical Request Record

www.energylab.com

- 1
. 1
ō
1
- 1
-
d)
g
Ö
1

Steve Heck And Care Heck Steve Heck And Care Become Report Chard Copy Email Steve Heck And Care Become Report Chard Copy Email Steve Heck And Care Become Report Chard Copy Email Steve Heck	Account Inform	Account Information (Billing information)	ation)		Ke	DOL INT	ormatio	n (if differ	ent than Acc	Report Information (if different than Account Information)	Comments	S	
Contact		on Engineering Inc.			Com	pany/Name					These are	dustfalls	samples.
Address 3143E Lyndale Ave		ve Heck			Con	act					Collected	from 07.0	02.2024 to 07.30.2024
Sheek@Bison-eng compared Sheek@Bison-eng com	202	3-498-4199			Phoi	e.							
State Election MT 59601 Club, Same, 20 Club Cl	1000	13 E Lyndale Ave			Maili	ng Address							
Second Registration		lena, MT 59601			City,	State, Zip							
Receive Report Hand Copy Email Special Report Contact (abonatory) Other		ck@bison-eng.com	u		Ema	Ħ							
Special Reports annable Special Reports and the content abovatory Other		ard Copy Email Rece	eive Report	Hard Copy ■E	=	sive Report	☐Hard Co		lie				
Matrix Codes A - Air	Purchase Order	Quote H16951	Bottle	Order	Spec	ial Report/Fo	AC	EDD/ED	(contact labo	natory) 🗆 Other			
We water Solds Sol	Project Informa	ation				Matrix	Codes			Analysis Requ	ested		
1	Project Name, PWSID.	, Permit, etc. Montana	Resources	Dustfall			-						All turnaround times are
The preservatives supplied with the bottle order were NOT used, please attach your preservative information. Signature Note Note	Sampler Name Steve		sampler Phone 4	106-498-419	99		/ater oils/		DIMI 'I				RUSH.
Collection	Sample Origin State N		PA/State Com	l.			olids		IM (F	Energy Laboratories MUST be contacted prior t
Sample Identification	URANIUM MINING CI Upprocessed Ore Deprocessed Ore Deprocessed Ore (Gro	LIENTS MUST indicate and or Refined) **CALL faterial (Can ONLY be St.	sample type BEFORE SEN ubmitted to ELI	DING Casper Locatio	nu)		ioassay iii rinking Vater		a, cu, Pr			oedostiA	RUSH sample submittal for charges and scheduling - See Instructions Page
DF-GREELEY-012 07/30/2024 10:20 am	Sami	ple Identification		Collec	tion		Matrix (See Codes Above)		uz O 'sv				
DF-WALNUT-012 07/30/2024 10:47 am		-012			10:08 am		A	>	`				8 2008 0 KZH
DF-FB-012 07/30/2024 10:49 am 1 A					10:20 am		A	`	`				
DF-FB-012 DF-F	-	012			10:47 am		A	>	`				
ELI is REQUIRED to provide preservative traceability. If the preservatives supplied with the bottle order were NOT used, please attach your preservative Received by (print) Custody Relinquished by (print) Pland Pl	_				10:49 am		A	`	`				
Custody Relinquished by (print) Pater Pa	2											_	
ELI is REQUIRED to provide preservative traceability. If the preservatives supplied with the bottle order were NOT used, please attach your preservative record Record Not used, please attach your preservative record Not used No	9								_				
ELI is REQUIRED to provide preservative traceability. If the preservatives supplied with the bottle order were NOT used, please attach your preservative Received by (print) Reservative traceability. If the preservatives supplied with the bottle order were NOT used, please attach your preservative Received by (print) Reservative Traceability. If the preservatives supplied with the bottle order were NOT used, please attach your preservative Plantary in the preservative Bratefilme Signature Received by (print) Batefilme LABORATORY USE Amount Amount Amount	7								_				
Custody Relinquished by (print) Custody Relinquished by (print) Custody Relinquished by (print) Custody Relinquished by (print) Custody Seals Intact Receipt Temp Temp Blank One Custody Seals Amount	80												
Relinquished by (print) Carlot of State Caste		objects of Godinary		o de la constantina della cons	1 1 -	accijevac	To il da	d odt die	appropriate order	TON orow	resource and the second	and anitoria	motion with this COC
Relinquished by (print) Date/Fine Signature Si		quished by (print)	A Date	Time 13	- I NO	Selvatives	No Allertons		Received b	y (print)	Date/Time	37 8	Signature
LABORATORY USE ONLY Cooler ID(s) Custody Seals Intact Receipt Temp Blank On Lee Payment Type Amount Active Annual Amount Cooler ID(s) Custody Seals Intact Receipt Temp Blank On Lee Payment Type Amount Active Annual Amount Cooler ID(s) Custody Seals Intact Receipt Temp Blank On Lee Payment Type Amount Active Annual Amount Cooler ID(s) Custody Seals Intact Receipt Temp Blank On Lee Payment Type Amount Cooler ID(s) Custody Seals Intact Receipt Temp Blank On Lee Payment Type Amount Cooler ID(s) Custody Seals Intact Receipt Temp Blank On Lee Payment Type Amount Cooler ID(s) Custody Seals Intact Receipt Temp Blank On Lee Payment Type Seals Intact Receipt Temp Blank On Lee Payment T		quished by (print)	Date			ture			Received I	by Laboratory (print)	20	20	Signature
Cooler ID(s) Custody Seals Intact Receipt Temp Temp Blank On Loe Payment Type Amount A. A. A. C. B. Y. N. C. C. Cash Check S						Total State of	LABORAT	FORY US					
	Shipped By	Cooler ID(s) Cust	tody Seals	Intact Y N	Receipt Tem		Blank	N N		Payment Type Cash Check	Amount \$	Receip	pt Number (cash/check only)

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ANALYTICAL SUMMARY REPORT

September 24, 2024

Bison Engineering 3143 E Lyndale Ave Helena, MT 59601-6401

Work Order: H24090105 Quote ID: H16951

Project Name: Montana Resources Dustfall

Energy Laboratories Inc Helena MT received the following 4 samples for Bison Engineering on 9/4/2024 for analysis.

Lab ID	Client Sample ID	Collect Date R	eceive Date	Matrix	Test
H24090105-001	DF-GREELEY-013	08/29/24 11:10	09/04/24	Solid	Metals by ICP/ICPMS, Total Total Metals Digestion by SW3050B Soil Preparation USDA1 Soil Parameters
H24090105-002	DF-PINE-013	08/29/24 11:22	09/04/24	Solid	Metals by ICP/ICPMS, Total Total Metals Digestion by SW3050B Soil Parameters
H24090105-003	DF-WALNUT-013	08/29/24 11:55	09/04/24	Solid	Same As Above
H24090105-004	DF-FB-013	08/29/24 11:57	09/04/24	Solid	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

Energy Laboratories, Inc. verifies the reported results for the analysis has been technically reviewed and approved for release.

If you have any questions regarding these test results, please contact your Project Manager.

CLIENT: Bison Engineering

Project: Montana Resources Dustfall Report Date: 09/24/24

Work Order: H24090105 CASE NARRATIVE

All "J" qualified analyte concentrations are below the laboratory minimum recommended Reporting Limit (RL) and above the calculated method detection limit (MDL). Inorganic analytes reported with "J" qualifiers should be verified against the corresponding method blank and continuing calibration blanks. Inorganic "J" quantitations near the MDL may be suspect due to possible method background levels, sample matrix effects, and/or daily variability in instrument signal-to-noise levels.

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Bison Engineering
Project: Montana Resources Dustfall

Lab ID: H24090105-001
Client Sample ID: DF-GREELEY-013

DateReceived: 09/04/24

Matrix: Solid

Report Date: 09/24/24

Collection Date: 08/29/24 11:10

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Dry Wt, g	0.0817	g		0.00010		USDA1	09/12/24 08:21 / kjb
Vet Wt, g	525.75	g		0.00010		USDA1	09/12/24 08:21 / kjb
METALS, TOTAL - EPA SW846							
Arsenic	66	mg/kg		9		SW6020	09/13/24 15:54 / dck
Cadmium	8	mg/kg		1		SW6020	09/13/24 15:54 / dck
Copper	6000	mg/kg		8		SW6020	09/13/24 15:54 / dck
.ead	297	mg/kg		6		SW6020	09/13/24 15:54 / dck
Manganese	2160	mg/kg		8		SW6020	09/13/24 15:54 / dck
Nolybdenum	8010	mg/kg		3		SW6020	09/13/24 15:54 / dck
Zinc	1630	mg/kg		30		SW6020	09/13/24 15:54 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Report Date: 09/24/24

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Bison Engineering

Project: Montana Resources Dustfall Collection Date: 08/29/24 11:22

 Lab ID:
 H24090105-002
 DateReceived:
 09/04/24

 Client Sample ID:
 DF-PINE-013
 Matrix:
 Solid

				MCL/		
Analyses	Result	Units	Qualifiers RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS						
Dry Wt, g	0.1161	g	0.0001	0	USDA1	09/12/24 08:21 / kjb
Wet Wt, g	504.01	g	0.0001	0	USDA1	09/12/24 08:21 / kjb
METALS, TOTAL - EPA SW846						
Arsenic	59	mg/kg	6		SW6020	09/13/24 16:15 / dck
Cadmium	7	mg/kg	1		SW6020	09/13/24 16:15 / dck
Copper	6420	mg/kg	6		SW6020	09/13/24 16:15 / dck
Lead	284	mg/kg	4		SW6020	09/13/24 16:15 / dck
Manganese	1700	mg/kg	5		SW6020	09/13/24 16:15 / dck
Molybdenum	5600	mg/kg	2		SW6020	09/13/24 16:15 / dck
Zinc	1610	mg/kg	20		SW6020	09/13/24 16:15 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Bison Engineering

Report Date: 09/24/24 Montana Resources Dustfall Project: Collection Date: 08/29/24 11:55 Lab ID: H24090105-003 DateReceived: 09/04/24

Client Sample ID: DF-WALNUT-013 Matrix: Solid

			MCL/	
Analyses	Result Units	Qualifiers RL	QCL Method	Analysis Date / By
PHYSICAL CHARACTERISTICS				
Dry Wt, g	0.1235 g	0.00010	USDA1	09/12/24 08:21 / kjb
Wet Wt, g	447.96 g	0.00010	USDA1	09/12/24 08:21 / kjb
METALS, TOTAL - EPA SW846				
Arsenic	41 mg/kg	9 6	SW6020	09/13/24 16:19 / dck
Cadmium	5 mg/kg	g 1	SW6020	09/13/24 16:19 / dck
Copper	3870 mg/kg	g 5	SW6020	09/13/24 16:19 / dck
_ead	240 mg/kg	9 4	SW6020	09/13/24 16:19 / dck
Manganese	1630 mg/kg	j 5	SW6020	09/13/24 16:19 / dck
Molybdenum	2400 mg/kg	2	SW6020	09/13/24 16:19 / dck
Zinc	1290 mg/kg	20	SW6020	09/13/24 16:19 / dck

RL - Analyte Reporting Limit Report Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Bison Engineering

Project: Montana Resources Dustfall

Lab ID: H24090105-004 Client Sample ID: DF-FB-013

Report Date: 09/24/24 Collection Date: 08/29/24 11:57 DateReceived: 09/04/24

Matrix: Solid

				MCL/		
Analyses	Result Uni	ts Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS						
Dry Wt, g	-0.016 g		0.00010		USDA1	09/12/24 08:21 / kjb
Wet Wt, g	288.24 g		0.00010		USDA1	09/12/24 08:21 / kjb
METALS, TOTAL - EPA SW846						
Arsenic	ND mg/	kg	1		SW6020	09/13/24 16:23 / dck
Cadmium	ND mg/	kg	1		SW6020	09/13/24 16:23 / dck
Copper	0.6 mg/	kg J	1		SW6020	09/13/24 16:23 / dck
Lead	ND mg/	kg	1		SW6020	09/13/24 16:23 / dck
Manganese	ND mg/	kg	1		SW6020	09/13/24 16:23 / dck
Molybdenum	ND mg/	kg	1		SW6020	09/13/24 16:23 / dck
Zinc	ND mg/	kg D	2		SW6020	09/13/24 16:23 / dck

Report RL - Analyte Reporting Limit Definitions:

QCL - Quality Control Limit

D - Reporting Limit (RL) increased due to sample matrix

MCL - Maximum Contaminant Level

ND - Not detected at the Reporting Limit (RL)

J - Estimated value - analyte was present but less than the Reporting Limit (RL)

RPD RPDLimit

Analytical Run: ICPMS206-H_240913B

Qual

09/13/24 12:33

Count

Result

0.0605

Analyte

Method:

Lab ID:

Arsenic

SW6020

ICV

QA/QC Summary Report

Prepared by Helena, MT Branch

0.0010

101

RL %REC Low Limit High Limit

90

110

Client: Bison Engineering Work Order: H24090105 Report Date: 09/24/24

Units

mg/L

7 Initial Calibration Verification Standard

711001110	0.0000	1119/ -	0.0010	101	50	110	
Cadmium	0.0304	mg/L	0.0010	101	90	110	
Copper	0.0619	mg/L	0.0010	103	90	110	
Lead	0.0623	mg/L	0.0010	104	90	110	
Manganese	0.307	mg/L	0.0010	102	90	110	
Molybdenum	0.0598	mg/L	0.0010	100	90	110	
Zinc	0.0620	mg/L	0.0010	103	90	110	
Lab ID: ICSA	7 Interference Ch	neck Sample	e A				09/13/24 12:43
Arsenic	ND	mg/L	0.0010				
Cadmium	ND	mg/L	0.0010				
Copper	ND	mg/L	0.0010				
Lead	ND	mg/L	0.0010				
Manganese	ND	mg/L	0.0010		0	0	
Molybdenum	0.902	mg/L	0.0010	113	70	130	
Zinc	ND	mg/L	0.0010				
Lab ID: ICSAB	7 Interference Ch	neck Sample	e AB				09/13/24 12:49
Arsenic	0.0107	mg/L	0.0010	107	70	130	
Cadmium	0.0107	mg/L	0.0010	107	70	130	
Copper	0.0207	mg/L	0.0010	103	70	130	
Lead	ND	mg/L	0.0010		0	0	
Manganese	0.0212	mg/L	0.0010	106	70	130	
Molybdenum	0.895	mg/L	0.0010	112	70	130	
Zinc	0.0123	mg/L	0.0010	123	70	130	
Lab ID: CCV	7 Continuing Cal	ibration Verif	fication Standard	I			09/13/24 15:26
Arsenic	0.0490	mg/L	0.0010	98	90	110	
Cadmium	0.0488	mg/L	0.0010	98	90	110	
Copper	0.0488	mg/L	0.0010	98	90	110	
Lead	0.0501	mg/L	0.0010	100	90	110	
Manganese	0.0488	mg/L	0.0010	98	90	110	
Molybdenum	0.0497	mg/L	0.0010	99	90	110	
Zinc	0.0489	mg/L	0.0010	98	90	110	
Lab ID: CCV	7 Continuing Cal	ibration Verif	fication Standard	I			09/13/24 16:27
Arsenic	0.0489	mg/L	0.0010	98	90	110	
Cadmium	0.0495	mg/L	0.0010	99	90	110	
Copper	0.0487	mg/L	0.0010	97	90	110	
Lead	0.0498	mg/L	0.0010	100	90	110	
Manganese	0.0483	mg/L	0.0010	97	90	110	
Molybdenum	0.0506	mg/L	0.0010	101	90	110	
•	0.0483	mg/L	0.0010	97	90	110	

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Client: Bison Engineering Work Order: H24090105 Report Date: 09/24/24

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020									Bate	ch: 73869
Lab ID:	MB-73869	7 Me	thod Blank				Run: ICPM	S206-H_240913B	3	09/13/	24 15:34
Arsenic			ND	mg/kg	0.8						
Cadmium			ND	mg/kg	0.04						
Copper			ND	mg/kg	0.6						
Lead			ND	mg/kg	0.5						
Manganes	se .		ND	mg/kg	0.6						
Molybdenu	um		ND	mg/kg	0.3						
Zinc			ND	mg/kg	2						
Lab ID:	LCS-73869	7 Lat	ooratory Cor	ntrol Samp	е		Run: ICPM	S206-H_240913B	3	09/13/	24 15:38
Arsenic			363	mg/kg	1.5	94	66.4	104			
Cadmium			234	mg/kg	1.0	119	79.2	121			
Copper			263	mg/kg	1.3	97	73.9	113			
Lead			248	mg/kg	1.0	119	71.6	128			
Manganes	se		888	mg/kg	1.2	103	74.4	123			
Molybdeni	um		277	mg/kg	1.0	110	61.3	124			
Zinc			516	mg/kg	4.7	113	83.1	125			
Lab ID:	LFB-73869	7 Lat	ooratory For	tified Blank	(Run: ICPM	S206-H_240913B	3	09/13/	24 15:42
Arsenic			55.0	mg/kg	1.0	88	80	120			
Cadmium			32.3	mg/kg	1.0	103	80	120			
Copper			55.5	mg/kg	1.0	89	80	120			
Lead			63.0	mg/kg	1.0	101	80	120			
Manganes	se		269	mg/kg	1.0	86	80	120			
Molybdenu	um		62.8	mg/kg	1.0	100	80	120			
Zinc			54.6	mg/kg	2.4	87	80	120			
Lab ID:	LFBD-73869	7 Lat	ooratory For	tified Blank	Duplicate		Run: ICPM	S206-H_240913B	3	09/13/	24 15:46
Arsenic			55.4	mg/kg	1.0	89	80	120			
Cadmium			32.2	mg/kg	1.0	103	80	120			
Copper			55.2	mg/kg	1.0	88	80	120			
Lead			62.2	mg/kg	1.0	100	80	120			
Manganes	se		272	mg/kg	1.0	87	80	120			
Molybdenu	um		64.2	mg/kg	1.0	103	80	120			
Zinc			54.4	mg/kg	2.4	87	80	120			
Lab ID:	H24090105-001ADIL	7 Se	rial Dilution				Run: ICPM	S206-H_240913B	3	09/13/	24 15:58
Arsenic			72.5	mg/kg	46		0	0		10	N
Cadmium			8.30	mg/kg	2.2		0	0		10	N
Copper			6220	mg/kg	39		0	0	3.6	10	
Lead			302	mg/kg	31		0	0		10	N
Manganes	se		2350	mg/kg	38		0	0	8.5	10	
Molybdeni	um		7830	mg/kg	17		0	0	2.2	10	
Zinc			1790	mg/kg	140		0	0	9.1	10	
Lab ID:	H24090105-001AMS	7 Sa	mple Matrix	Spike			Run: ICPM	S206-H_240913B	3	09/13/	24 16:03
Arsenic			335	mg/kg	9.2	88	75	125			
Cadmium			322	mg/kg	1.0	103	75	125			

Qualifiers:

RL - Analyte Reporting Limit

N - Analyte concentration was not sufficiently high to calculate a Relative Percent Difference (RPD) for the serial dilution test

Prepared by Helena, MT Branch

Client: Bison Engineering Work Order: H24090105 Report Date: 09/24/24

	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
SW6020									Bat	ch: 73869
H24090105-001AMS	7 Sar	nple Matrix	Spike			Run: ICPMS	S206-H_240913B		09/13/	24 16:03
		6240	mg/kg	7.8		75	125			Α
		585	mg/kg	6.1	94	75	125			
		2390	mg/kg	7.5		75	125			Α
n		8440	mg/kg	3.4		75	125			Α
		1870	mg/kg	29		75	125			Α
H24090105-001AMSD	7 Sar	nple Matrix	Spike Duplicate			Run: ICPMS	S206-H_240913B		09/13/	24 16:07
		341	mg/kg	9.2	90	75	125	1.6	20	
		321	mg/kg	1.0	103	75	125	0.2	20	
		6240	mg/kg	7.8		75	125	0.1	20	Α
		604	mg/kg	6.1	100	75	125	3.2	20	
		2450	mg/kg	7.5		75	125	2.2	20	Α
n		8510	mg/kg	3.4		75	125	0.9	20	Α
		1900	mg/kg	29		75	125	1.6	20	Α
	H24090105-001AMS	SW6020 H24090105-001AMS 7 Sar m H24090105-001AMSD 7 Sar	SW6020 H24090105-001AMS 7 Sample Matrix 6240 585 2390 n 8440 1870 H24090105-001AMSD 7 Sample Matrix 341 321 6240 604 2450 n 8510	SW6020 H24090105-001AMS 7 Sample Matrix Spike 6240 mg/kg 585 mg/kg 2390 mg/kg 1870 mg/kg 1870 mg/kg 341 mg/kg 321 mg/kg 6240 mg/kg 604 mg/kg 2450 mg/kg m 8510 mg/kg	SW6020 H24090105-001AMS 7 Sample Matrix Spike 6240 mg/kg 7.8 585 mg/kg 6.1 2390 mg/kg 7.5 m 8440 mg/kg 3.4 1870 mg/kg 29 H24090105-001AMSD 7 Sample Matrix Spike Duplicate 341 mg/kg 9.2 321 mg/kg 1.0 6240 mg/kg 7.8 604 mg/kg 6.1 2450 mg/kg 7.5 m 8510 mg/kg 3.4	\$\begin{array}{c ccccccccccccccccccccccccccccccccccc	SW6020 H24090105-001AMS 7 Sample Matrix Spike Run: ICPMS 6240 mg/kg 7.8 75 585 mg/kg 6.1 94 75 2390 mg/kg 7.5 75 m 8440 mg/kg 3.4 75 1870 mg/kg 29 75 H24090105-001AMSD 7 Sample Matrix Spike Duplicate Run: ICPMS 341 mg/kg 9.2 90 75 321 mg/kg 1.0 103 75 6240 mg/kg 7.8 75 604 mg/kg 7.8 75 604 mg/kg 6.1 100 75 2450 mg/kg 7.5 75 m 8510 mg/kg 3.4 75	\$\begin{array}{c ccccccccccccccccccccccccccccccccccc	\$\begin{array}{c c c c c c c c c c c c c c c c c c c	SW6020 Sample Matrix Spike Run: ICPMS206-H_240913B 09/13/6240 mg/kg 7.8 75 125 125 125 1870 mg/kg 3.4 75 125 125 125 1870 mg/kg 9.2 90 75 125 125 126 12

Qualifiers:

RL - Analyte Reporting Limit

A - Analyte level was greater than four times the spike level - in accordance with the method, percent recovery is not calculated

Work Order Receipt Checklist

Bison Engineering

H24090105

Reviewed Date: 9/11/2024	Login completed by:	Rebecca A. Tooke		Date F	Received: 9/4/2024
Shipping container/cooler in good condition? Yes \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Reviewed by:	ahowell		Red	eived by: RAT
Custody seals intact on all shipping container(s)/cooler(s)? Yes	Reviewed Date:	9/11/2024		Carr	ier name: Hand Deliver
Custody seals intact on all sample bottles? Yes No No Not Present Yes No Not Present Yes No Not Present Yes Not Not N	Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present
Chain of custody present? Yes ☑ No ☐ Chain of custody signed when relinquished and received? Yes ☑ No ☐ Chain of custody agrees with sample labels? Yes ☑ No ☑ Samples in proper container/bottle? Yes ☑ No ☐ Sample containers intact? Yes ☑ No ☐ Sufficient sample volume for indicated test? Yes ☑ No ☐ All samples received within holding time? (Exclude analyses that are considered field parameters such as pH, DO, Res CI, Sulfite, Ferrous Iron, etc.) Temp Blank received in all shipping container(s)/cooler(s)? Yes ☐ No ☑ Not Applicable ☐ Container/Temp Blank temperature: 24.7°C No Ice Containers requiring zero headspace have no headspace or bubble that is <6mm (1/4").	Custody seals intact on all sl	nipping container(s)/cooler(s)?	Yes	No 🗌	Not Present ✓
Chain of custody signed when relinquished and received? Yes No Chain of custody agrees with sample labels? Yes No Samples in proper container/bottle? Yes No Sample containers intact? Yes No No Sample containers intact? Yes No No Sample containers intact? Yes No No Sample volume for indicated test? Yes No No Samples received within holding time? (Exclude analyses that are considered field parameters such as pH, DO, Res CI, Sulfite, Ferrous Iron, etc.) Temp Blank received in all shipping container(s)/cooler(s)? Yes No No Not Applicable Container/Temp Blank temperature: 24.7°C No Ice Containers requiring zero headspace have no headspace or bubble that is <6mm (1/4").	Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody agrees with sample labels? Yes No Samples in proper container/bottle? Yes No No Sample containers intact? Yes No No Sufficient sample volume for indicated test? Yes No No Sufficient sample volume for indicated test? All samples received within holding time? (Exclude analyses that are considered field parameters such as pH, DO, Res Cl, Sulfite, Ferrous Iron, etc.) Temp Blank received in all shipping container(s)/cooler(s)? Yes No No Not Applicable Container/Temp Blank temperature: 24.7°C No Ice Containers requiring zero headspace have no headspace or bubble that is <6mm (1/4").	Chain of custody present?		Yes √	No 🗌	
Samples in proper container/bottle? Yes \(\subseteq \) No \(\subseteq \) Sufficient sample volume for indicated test? Yes \(\subseteq \) No \(\subseteq \) All samples received within holding time? (Exclude analyses that are considered field parameters such as pH, DO, Res CI, Sulfite, Ferrous Iron, etc.) Temp Blank received in all shipping container(s)/cooler(s)? Yes \(\subseteq \) No \(\subseteq \) Not Applicable \(\subseteq \) Container/Temp Blank temperature: 24.7°C No Ice Containers requiring zero headspace have no headspace or bubble that is <6mm (1/4").	Chain of custody signed whe	en relinquished and received?	Yes 🗸	No 🗌	
Sample containers intact? Yes No Sufficient sample volume for indicated test? Yes No No All samples received within holding time? (Exclude analyses that are considered field parameters such as pH, DO, Res CI, Sulfite, Ferrous Iron, etc.) Temp Blank received in all shipping container(s)/cooler(s)? Yes No No Not Applicable Container/Temp Blank temperature: 24.7°C No Ice Containers requiring zero headspace have no headspace or bubble that is <6mm (1/4").	Chain of custody agrees with	n sample labels?	Yes	No 🗹	
Sufficient sample volume for indicated test? Yes \[\script{V} \] No \[\] All samples received within holding time? (Exclude analyses that are considered field parameters such as pH, DO, Res CI, Sulfite, Ferrous Iron, etc.) Temp Blank received in all shipping container(s)/cooler(s)? Yes \[\script{V} \] No \[\script{Not Applicable} \[\] Container/Temp Blank temperature: 24.7°C No Ice Containers requiring zero headspace have no headspace or bubble that is <6mm (1/4").	Samples in proper container	/bottle?	Yes √	No 🗌	
All samples received within holding time? (Exclude analyses that are considered field parameters such as pH, DO, Res CI, Sulfite, Ferrous Iron, etc.) Temp Blank received in all shipping container(s)/cooler(s)? Yes No No Not Applicable Container/Temp Blank temperature: 24.7°C No Ice Containers requiring zero headspace have no headspace or bubble that is <6mm (1/4").	Sample containers intact?		Yes √	No 🗌	
(Exclude analyses that are considered field parameters such as pH, DO, Res CI, Sulfite, Ferrous Iron, etc.) Temp Blank received in all shipping container(s)/cooler(s)? Yes □ No ✓ Not Applicable □ Container/Temp Blank temperature: 24.7°C No Ice Containers requiring zero headspace have no headspace or bubble that is <6mm (1/4").	Sufficient sample volume for	indicated test?	Yes √	No 🗌	
Container/Temp Blank temperature: 24.7°C No Ice Containers requiring zero headspace have no headspace or bubble that is <6mm (1/4").	(Exclude analyses that are c	onsidered field parameters	Yes ✓	No 🗌	
Containers requiring zero headspace have no headspace or Yes No No No VOA vials submitted bubble that is <6mm (1/4").	Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
bubble that is <6mm (1/4").	Container/Temp Blank tempe	erature:	24.7°C No Ice		
Water - pH acceptable upon receipt? Yes No Not Applicable		adspace have no headspace or	Yes	No 🗌	No VOA vials submitted
	Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as -dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Trip Blanks and/or Blind Duplicate samples are assigned the earliest collection time for the associated requested analysis in order to evaluate the holding time unless specifically indicated.

Contact and Corrective Action Comments:

The collection date/times indicated are not on all containers. Proceeded with the collection date/time as indicated on the chain of custody. 09/11/24 ALH

ENERGY (3)
LABORATORIES
Trust our People. Trust our Data.

Chain of Custody & Analytical Request Record

www.energylab.com

Page 1 of 1

Account I	Account Information (Billing information)	rmation)		Re	port In	formatio	n (if differ	Report Information (if different than Account Information)	ount Inform	ation)	Comr	Comments		
Company/Name	e Bison Engineering Inc.	nc.		Con	Company/Name	e					These	These are dustfall samples.	fall sa	mples.
Contact	Steve Heck			Contact	tact						Collec	ted from	07.30	Collected from 07.30.2024 to 08.29.2024
Phone	406-498-4199			Phone	ЭL									
Mailing Address	s 3143 E Lyndale Ave			Mail	Mailing Address	S.								
City, State, Zip	Helena, MT 59601			City,	City, State, Zip									
Email	sheck@bison-eng.com	om		Email	ii									
Receive Invoice	e	eceive Report	☐ Hard Copy	■Email Rec	eive Repor	Receive Report	opy □Email	lie						
Purchase Order MTR224018	R Quote H16951	m .	Bottle Order	Spec	Special Report/Formats	AC	□ EDD/ED.	☐ EDD/EDT (contact laboratory) ☐ Other	atory) 🗆 O	ther				
Project In	Project Information				Matrix	Matrix Codes			Analysis	sis Requested	sted			2000 2000 2000
Project Name,	Project Name, PWSID, Permit, etc. Montana Resources Dustfall	ina Resour	ses Dustfall		- A	Air		.						All turnaround times are standard unless marked as
Sampler Name Steve Heck	Steve Heck	Sampler Pho	Sampler Phone 406-498-4199	66	Ż ú	Water Soils/		DM 'U						RUSH.
Sample Origin	Sample Origin State Montana	EPA/State Compliance	Compliance Yes	es 🔳 No		Solids	20 20 3	IM 'c					p	MUST be contacted prior to
URANIUM MIN Unprocesse Processed (URANIUM MINING CLIENTS MUST indicate sample type Upprocessed Ore Processed Ore (Ground or Refined) **CALL BEFORE SENDING 11(e) 2 Byproduct Material (Can ONLY be Submitted to ELI Casper Location)	ite sample typ	senDING ELI Casper Locati	ou)	- B - O - O - O - O - O - O - O - O - O	Bloassay Oil Drinking Water	t - ointern	d, Cu, Pi					Attache	RUSH sample submittal for charges and scheduling – See Instructions Page
	Sample Identification	_	Collection	ction	Number of Containers	Matrix (See Codes		O ,eA NZ					See RUSH TAT	ELI LAB ID
1 DF-GRE	DF-GREELEY-013		08/29/2024	11	-	A	>	>						五
2 DF-PINE-013	5-013		08/29/2024	11:22 am	-	4	>	`						
3 DF-WAL	DF-WALNUT-013		08/29/2024	11:55 am	-	A	>	`						
4 DF-FB-013	113		08/29/2024	11:57 am	-	А	>	`						
22														
9														
7														
80								_						
6								-					-	000
Custody	Relinquished by joint	ide preserva	Satelfine		servative	s supplied	with the p	Received by (print)	vere NO	used, piea	Se attach your	preservative	Sign	The preservatives supplied with the bottle order were NOI used, please attach your preservative information with this COC. Signature Received by (print) Date/Time Signature Si
MUST	Relinquished by (print)		Date/Time	Signature	ture			Raceived b	Received by Laboratory (print)	(Brigh	Date/Time	24 10	Sign	Signature / Coop
200		COLUMN TO SERVICE SERV				LABOR/	LABORATORY USE ONLY						0	
Shipped By	Cooler ID(s)	Custody Seals	Intact Y N	Receipt Temp		Temp Blank	on lo	သ	Payme Cash (Payment Type h Check	Amount		Receipt N	Receipt Number (cash/check only)
mon	200)			-)					-		

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ANALYTICAL SUMMARY REPORT

October 23, 2024

Bison Engineering 3143 E Lyndale Ave Helena, MT 59601-6401

Work Order: H24100074 Quote ID: H16951

Project Name: Montana Resources Dustfall

Energy Laborato	ries Inc Helena MT receive	ed the following 4 sa	amples for Bise	on Engineerin	g on 10/1/2024 for analysis.
Lab ID	Client Sample ID	Collect Date R	eceive Date	Matrix	Test
H24100074-001	DF-GREELEY-014	09/30/24 13:30	10/01/24	Solid	Metals by ICP/ICPMS, Total Total Metals Digestion by SW3050B Soil Preparation USDA1 Soil Parameters
H24100074-002	DF-PINE-014	09/30/24 14:50	10/01/24	Solid	Metals by ICP/ICPMS, Total Total Metals Digestion by SW3050B Soil Parameters
H24100074-003	DF-WALNUT-014	09/30/24 15:30	10/01/24	Solid	Same As Above
H24100074-004	DF-FB-014	09/30/24 15:35	10/01/24	Solid	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

Energy Laboratories, Inc. verifies the reported results for the analysis has been technically reviewed and approved for release.

If you have any questions regarding these test results, please contact your Project Manager.

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Bison Engineering

Project: Montana Resources Dustfall

Lab ID: H24100074-001
Client Sample ID: DF-GREELEY-014

Report Date: 10/23/24 **Collection Date:** 09/30/24 13:30 **DateReceived:** 10/01/24

Matrix: Solid

					MCL/		
Analyses	Result I	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Ory Wt, g	0.12	g		0.00010		USDA1	10/11/24 17:31 / kjb
Wet Wt, g	428 (g		0.00010		USDA1	10/11/24 17:31 / kjb
METALS, TOTAL - EPA SW846							
Arsenic	21 r	mg/kg		3		SW6020	10/16/24 15:04 / dck
Cadmium	2 r	mg/kg		1		SW6020	10/16/24 15:04 / dck
Copper	1460 r	mg/kg		2		SW6020	10/16/24 15:04 / dck
₋ead	88 r	mg/kg		2		SW6020	10/16/24 15:04 / dck
Manganese	684 r	mg/kg		2		SW6020	10/16/24 15:04 / dck
Molybdenum	3460 r	mg/kg		1		SW6020	10/16/24 15:04 / dck
Zinc	435 r	mg/kg		8		SW6020	10/16/24 15:04 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

Client: Bison Engineering

Project: Montana Resources Dustfall

Lab ID: H24100074-002 Client Sample ID: DF-PINE-014

Report Date: 10/23/24 **Collection Date:** 09/30/24 14:50

Matrix: Solid

DateReceived: 10/01/24

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Dry Wt, g	0.11	g		0.00010		USDA1	10/11/24 17:31 / kjb
Wet Wt, g	443	g		0.00010		USDA1	10/11/24 17:31 / kjb
METALS, TOTAL - EPA SW846							
Arsenic	27	mg/kg		3		SW6020	10/16/24 15:20 / dck
Cadmium	3	mg/kg		1		SW6020	10/16/24 15:20 / dck
Copper	3330	mg/kg		2		SW6020	10/16/24 15:20 / dck
Lead	110	mg/kg		2		SW6020	10/16/24 15:20 / dck
Manganese		mg/kg		2		SW6020	10/16/24 15:20 / dck
Molybdenum	4780	mg/kg		1		SW6020	10/16/24 15:20 / dck
Zinc		mg/kg		9		SW6020	10/16/24 15:20 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Bison Engineering Project: Montana Resources Dustfall

Lab ID: H24100074-003 Client Sample ID: DF-WALNUT-014

Report Date: 10/23/24 Collection Date: 09/30/24 15:30 DateReceived: 10/01/24

Matrix: Solid

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
PHYSICAL CHARACTERISTICS							
Ory Wt, g	0.11	g		0.00010		USDA1	10/11/24 17:31 / kjb
Wet Wt, g	449	g		0.00010		USDA1	10/11/24 17:31 / kjb
METALS, TOTAL - EPA SW846							
Arsenic	16	mg/kg		3		SW6020	10/16/24 15:24 / dck
Cadmium	1	mg/kg		1		SW6020	10/16/24 15:24 / dck
Copper	1200	mg/kg		2		SW6020	10/16/24 15:24 / dck
_ead	71	mg/kg		2		SW6020	10/16/24 15:24 / dck
Manganese	613	mg/kg		2		SW6020	10/16/24 15:24 / dck
Molybdenum	959	mg/kg		1		SW6020	10/16/24 15:24 / dck
Zinc	402	mg/kg		9		SW6020	10/16/24 15:24 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit MCL - Maximum Contaminant Level

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: Bison Engineering Project: Montana Resources Dustfall

Lab ID: H24100074-004 Client Sample ID: DF-FB-014

Report Date: 10/23/24 Collection Date: 09/30/24 15:35 DateReceived: 10/01/24

Matrix: Solid

			MCL/	
Analyses	Result Units	Qualifiers RL	QCL Method	Analysis Date / By
PHYSICAL CHARACTERISTICS				
Dry Wt, g	0.0032 g	0.00010	USDA1	10/11/24 17:31 / kjb
Wet Wt, g	319 g	0.00010	USDA1	10/11/24 17:31 / kjb
METALS, TOTAL - EPA SW846				
Arsenic	ND mg/k	g 1	SW6020	10/16/24 15:27 / dck
Cadmium	ND mg/k	g 1	SW6020	10/16/24 15:27 / dck
Copper	ND mg/k	g 1	SW6020	10/16/24 15:27 / dck
.ead	ND mg/k	g 1	SW6020	10/16/24 15:27 / dck
Manganese	ND mg/k	g 1	SW6020	10/16/24 15:27 / dck
Nolybdenum	ND mg/k	g 1	SW6020	10/16/24 15:27 / dck
Zinc	ND mg/k	g 1	SW6020	10/16/24 15:27 / dck

Report RL - Analyte Reporting Limit

Definitions: QCL - Quality Control Limit MCL - Maximum Contaminant Level

Prepared by Helena, MT Branch

 Work Order:
 H24100074
 Report Date:
 10/23/24

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW6020							Analytic	al Run: I0	CPMS206-H	_241016A
Lab ID:	ICV	7 Initia	l Calibration	on Verification	n Standard					10/16	/24 13:19
Arsenic			0.0609	mg/L	0.0010	102	90	110			
Cadmium			0.0313	mg/L	0.0010	104	90	110			
Copper			0.0632	mg/L	0.0010	105	90	110			
Lead			0.0597	mg/L	0.0010	99	90	110			
Manganes	se		0.310	mg/L	0.0010	103	90	110			
Molybden	um		0.0595	mg/L	0.0010	99	90	110			
Zinc			0.0629	mg/L	0.0010	105	90	110			
Lab ID:	ICSA	7 Inter	ference Cl	neck Sample	Α					10/16	/24 13:29
Arsenic		-0.0	0000166	mg/L	0.0010						
Cadmium		0	.000117	mg/L	0.0010						
Copper		0.0	0000359	mg/L	0.0010						
Lead		-0	.000391	mg/L	0.0010						
Manganes	se	0	.000312	mg/L	0.0010		0	0			
Molybden	um		0.796	mg/L	0.0010	100	70	130			
Zinc		0	.000162	mg/L	0.0010						
Lab ID:	ICSAB	7 Inter	ference Cl	neck Sample	AB					10/16	/24 13:35
Arsenic			0.00980	mg/L	0.0010	98	70	130			
Cadmium			0.00999	mg/L	0.0010	100	70	130			
Copper			0.0193	mg/L	0.0010	96	70	130			
Lead		-0	.000373	mg/L	0.0010		0	0			
Manganes	se		0.0197	mg/L	0.0010	99	70	130			
Molybden	um		0.824	mg/L	0.0010	103	70	130			
Zinc			0.0111	mg/L	0.0010	111	70	130			
Lab ID:	ccv	7 Cont	inuing Cal	ibration Verif	ication Standa	ď				10/16	/24 14:40
Arsenic			0.0502	mg/L	0.0010	100	90	110			
Cadmium			0.0507	mg/L	0.0010	101	90	110			
Copper			0.0511	mg/L	0.0010	102	90	110			
Lead			0.0500	mg/L	0.0010	100	90	110			
Manganes	se		0.0501	mg/L	0.0010	100	90	110			
Molybden	um		0.0497	mg/L	0.0010	99	90	110			
Zinc			0.0505	mg/L	0.0010	101	90	110			
Method:	SW6020									Bat	ch: 74514
Lab ID:	MB-74514	7 Meth	od Blank				Run: ICPM	S206-H_241016	SA .	10/16	/24 14:47
Arsenic			ND	mg/kg	0.3						
Cadmium			ND	mg/kg	0.01						
Copper			ND	mg/kg	0.3						
Lead			ND	mg/kg	0.2						
Manganes	se		ND	mg/kg	0.2						
Molybden	um		ND	mg/kg	0.1						
Zinc			ND	mg/kg	0.9						

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Helena, MT Branch

Work Order: H24100074							Repor	t Date	: 10/23/24	
Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: SW6020									Bat	ch: 7451
Lab ID: LCS-74514	7 Lab	ooratory Co	ntrol Sample			Run: ICPM	S206-H_241016 <i>F</i>	4	10/16	/24 14:50
Arsenic		167	mg/kg	1.0	85	66.4	104			
Cadmium		102	mg/kg	1.0	103	79.2	121			
Copper		125	mg/kg	1.0	91	73.9	113			
Lead		108	mg/kg	1.0	103	71.6	128			
Manganese		410	mg/kg	1.0	95	74.4	123			
Molybdenum		119	mg/kg	1.0	93	61.3	124			
Zinc		247	mg/kg	1.9	107	83.1	125			
Lab ID: LFB-74514	7 Lab	ooratory Fo	tified Blank			Run: ICPM	S206-H_241016 <i>F</i>	4	10/16	/24 14:54
Arsenic		23.9	mg/kg	1.0	96	80	120			
Cadmium		12.9	mg/kg	1.0	104	80	120			
Copper		24.9	mg/kg	1.0	99	80	120			
Lead		24.4	mg/kg	1.0	98	80	120			
Manganese		120	mg/kg	1.0	96	80	120			
Molybdenum		24.5	mg/kg	1.0	98	80	120			
Zinc		24.5	mg/kg	1.0	98	80	120			
Lab ID: LFBD-74514	7 Lab	ooratory Fo	tified Blank Dupli	cate		Run: ICPM	S206-H_241016 <i>F</i>	4	10/16	/24 14:57
Arsenic		23.7	mg/kg	1.0	95	80	120			
Cadmium		13.0	mg/kg	1.0	104	80	120			
Copper		24.6	mg/kg	1.0	99	80	120			
Lead		24.8	mg/kg	1.0	99	80	120			
Manganese		119	mg/kg	1.0	95	80	120			
Molybdenum		25.0	mg/kg	1.0	100	80	120			
Zinc		24.5	mg/kg	1.0	98	80	120			
Lab ID: H24100074-001ADIL	7 Sei	rial Dilution				Run: ICPM	S206-H_241016 <i>F</i>	A	10/16	/24 15:07
Arsenic		21.4	mg/kg	13		0	0		10	N
Cadmium		2.10	mg/kg	1.0		0	0		10	N
Copper		1540	mg/kg	11		0	0	5.8	10	
Lead		87.1	mg/kg	8.6		0	0	1.6	10	
Manganese		713	mg/kg	11		0	0	4.1	10	
Molybdenum		3460	mg/kg	4.7		0	0	0.1	10	
Zinc		463	mg/kg	41		0	0	6.3	10	
Lab ID: H24100074-001AMS	7 Sai	mple Matrix	•				S206-H_241016 <i>F</i>	A	10/16	/24 15:10
Arsenic		102	mg/kg	2.6	94	75	125			
Cadmium		92.2	mg/kg	1.0	104	75	125			
Copper		1590	mg/kg	2.2		75	125			Α
Lead		166	mg/kg	1.7	89	75	125			
Manganese		748	mg/kg	2.1		75	125			Α
Molybdenum		3610	mg/kg	1.0		75	125			Α
Zinc		506	mg/kg	8.1		75	125			Α
Lab ID: H24100074-001AMSE	7 Sai	mple Matrix	Spike Duplicate			Run: ICPM	S206-H_241016 <i>F</i>	A	10/16	/24 15:14
Arsenic		100	mg/kg	2.6	92	75	125	1.7	20	
Cadmium		90.8	mg/kg	1.0	103	75	125	1.5	20	

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

 ${\sf A}$ - Analyte level was greater than four times the spike level - in accordance with the method, percent recovery is not calculated

N - Analyte concentration was not sufficiently high to calculate a Relative Percent Difference (RPD) for the serial dilution test

496

mg/kg

Report Date: 10/23/24

2.1

20

Α

Work Order: H24100074

Zinc

QA/QC Summary Report

Prepared by Helena, MT Branch

Analyte	Cour	nt Result	Units	RL	%REC Lo	w Limit	High Limit	RPD	RPDLimit	Qual
Method: SW	V6020								Bato	ch: 74514
Lab ID: H241	100074-001AMSD 7	Sample Matrix	Spike Duplicate		Ru	ın: ICPMS	S206-H_241016A		10/16/	24 15:14
Copper		1610	mg/kg	2.2		75	125	1.5	20	Α
Lead		172	mg/kg	1.7	97	75	125	4.0	20	
Manganese		738	mg/kg	2.1		75	125	1.3	20	Α
Molybdenum		3510	mg/kg	1.0		75	125	3.0	20	Α

8.1

75

125

Qualifiers:

RL - Analyte Reporting Limit

A - Analyte level was greater than four times the spike level - in accordance with the method, percent recovery is not calculated

Work Order Receipt Checklist

Bison Engineering

Login completed by: Taylor K. Jones

H24100074

Date Received: 10/1/2024

Reviewed by:	wjohnson		Red	ceived by: TKJ
Reviewed Date:	10/5/2024		Carr	ier name: Hand Deliver
Shipping container/cooler in g	good condition?	Yes	No 🗌	Not Present ✓
Custody seals intact on all sh	nipping container(s)/cooler(s)?	Yes	No 🗌	Not Present ✓
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?		Yes 🗸	No 🗌	
Chain of custody signed whe	n relinquished and received?	Yes ✓	No 🗌	
Chain of custody agrees with	sample labels?	Yes	No 🔽	
Samples in proper container/	bottle?	Yes 🗸	No 🗌	
Sample containers intact?		Yes 🗸	No 🗌	
Sufficient sample volume for	indicated test?	Yes 🗸	No 🗌	
All samples received within h (Exclude analyses that are co such as pH, DO, Res CI, Sul	onsidered field parameters	Yes 🔽	No 🗌	
Temp Blank received in all sh	nipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
Container/Temp Blank tempe	erature:	22.0°C No Ice		
Containers requiring zero hea bubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable 🗹

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Trip Blanks and/or Blind Duplicate samples are assigned the earliest collection time for the associated requested analysis in order to evaluate the holding time unless specifically indicated.

Contact and Corrective Action Comments:

The collection time and date were not provided on the sample containers. Proceeded with information provided on the chain of custody. TKJ 10/01/24

Laboratory Certifications and Accreditations

Current certificates are available at www.energylab.com website:

	Agency	Number		
	Alaska	17-023		
	California	3087		
	Colorado	MT00005		
	Department of Defense (DoD)/ISO17025	ADE-2588		
Billings, MT	Florida (Primary NELAP)	E87668		
	Idaho	MT00005		
d	Louisiana	05079		
ANAB	Montana	CERT0044		
ANSI National Accreditation Board A C C R E D I T E D	Nebraska	NE-OS-13-04		
TESTING LABORATORY	Nevada	NV-C24-00250		
ACCRE	North Dakota	R-007		
ALCON TO THE	National Radon Proficiency	109383-RMP		
TNI	Oregon	4184		
BORATON	South Dakota	ARSD 74:04:07		
	Texas	TX-C24-00302		
	US EPA Region VIII	Reciprocal		
	USDA Soil Permit	P330-20-00170		
	Washington	C1039		
	Alaska	20-006		
	California	3021		
	Colorado	WY00002		
	Florida (Primary NELAP)	E87641		
	Idaho	WY00002		
Casper, WY	Louisiana	05083		
cusper, vv r	Montana	CERT0002		
SUAP ACCREDIA	Nebraska	NE-OS-08-04		
TNI	Nevada	NV-C24-00245		
CABORATON'S	North Dakota	R-125		
	Oregon	WY200001		
	South Dakota	WY00002		
	Texas	T104704181-23-21		
	US EPA Region VIII	WY00002		
	USNRC License	49-26846-01		
	Washington	C1012		
Gillette, WY	US EPA Region VIII	WY00006		
	Colorado	MT00945		
Helena, MT	Montana	CERT0079		
	Nevada	NV-C24-00119		
	US EPA Region VIII	Reciprocal		
	USDA Soil Permit	P330-20-00090		

Chain of Custody & Analytical Request Record

www.energylab.com

of 1

Comments	These are dustfall samples.	Collected from 08.29.2024 to 09.30.2024							
Report Information (if different than Account Information)	Company/Name	Contact	Phone	Mailing Address	City, State, Zip	Email	Receive Report □Hard Copy □Email	Special Report/Formats:	
Account Information (Billing information)	Company/Name Bison Engineering Inc.	Contact Steve Heck	Phone 406-498-4199	Mailing Address 3143 E Lyndale Ave	City, State, Zip Helena, MT 59601	Email sheck@bison-eng.com	Receive Invoice	Purchase Order Quote Bottle Order H16951 H16951	

Sampler Name Steve Heck Sampler Phone 406-498-4199 Water Soulds Solids So	Project Information			Matrix Codes	sep	-	Analysis Requested	pei	1	
A06-498-4199 W. Water Solist S	ect Name, PWSID, Permit, etc. Montai	na Resources Dustfall			8		+			All turnaround times are
NDING	pler Name Steve Heck	Sampler Phone 406-498-419	6							RUSH.
B - Bloassay Colling Div. Water Casper Location Date Time Containers Case Codes Colling Colling	nple Origin State Montana				5					Energy Laboratories MUST be contacted prior to
Collection Collection Number of Matrix Second on, Intervet, etc.) Date Time Containers Carles Carles	ANIUM MINING CLIENTS MUST indical nprocessed Ore (Ground or Refined) **CAI (6)2 Byproduct Material (Can ONLY be	te sample type LL BEFORE SENDING Submitted to ELI Casper Location	e		, ay			poqueny	Attached	RUSH sample submittal for charges and scheduling – See Instructions Page
09/30/2024 133C 1 A	Sample Identification (Name, Location, Interval, etc.)	Dat	o E				U7	005	See	ELI LAB ID
09/30/2024 14 % 1	DF-GREELEY-014		1330	1 A					2	171
09/30/2024 1535 1	DF-PINE-014	09/30/2024	25	1 A	,	>			-	
09/30/2024 [5.35]	DF-WALNUT-014	09/30/2024	1530	1 A	,	,				
	DF-FB-014	09/30/2024	1535		,	,				

to provide preservative traceability. If the preservatives supplied with the bottle order were NOT used, please attach your preservative information with this COC. 1550 Payment Type Cash Check CC -30 1550 1033 Intact Y N Custody Seals Cooler (D(s) Custody Record MUST be signed

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

ELI-COC-01/21 v.4

APPENDIX D: COMMON GUIDELINES FOR AIRBORNE CONTAMINANTS

Dose and Risk Assessment References

Pollutant Arsenic	Organization	Standard Type	Description	Value	Units	Time Period	Reference
Aiseilic	WHO	Air Quality Guideline		0.0015	Unit Risk	Life-time	https://www.atsdr.cdc.gov/toxprofiles/tp2-c8.pdf
	NIOSH	REL		2	$\mu g/m^3$	15 min	https://www.atsdr.cdc.gov/toxprofiles/tp2-c8.pdf
	ACGIH	TLV (TWA)		10	μg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	OSHA	PEL (TWA)	General - organic As	200	μg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	OSHA	PEL (TWA)	General - inorganic As	10	μg/m³	8-hour	https://www.atsdr.cdc.gov/toxprofiles/tp2-c8.pdf
	OSHA	PEL (TWA)	Construction - organic	500	μg/m³	8-hour	https://www.atsdr.cdc.gov/toxprofiles/tp2-c8.pdf
	OSHA	PEL (TWA)	Shipyard - organic	500	μg/m³	8-hour	https://www.atsdr.cdc.gov/toxprofiles/tp2-c8.pdf
	EPA	EPA- Ca	Noncancer	0.015	μg/m³		https://www.epa.gov/sites/production/files/2014-05/documents/table1.pdf
	EPA	IRIS	Risk = 10 ⁻⁶ (lifetime)	0.043	μg/m³	Life-time	https://www.epa.gov/sites/production/files/2014-05/documents/table1.pdf
	EPA	REL		0.20	μg/m³	1-Hour	https://www.epa.gov/sites/production/files/2014-05/documents/table2.pdf
	EPA	RfC	Inorganic As	0.015	μg/m³	Life-time	https://semspub.epa.gov/work/HQ/401635.pdf - (November, 2021)
	EPA	RSL	Cancer Risk @ 10 ⁻⁶	0.65	ng/m³	Life-time	https://semspub.epa.gov/work/HQ/401635.pdf - (November, 2021)
	EPA	RSL	HI = 1	0.016	μg/m³		https://semspub.epa.gov/work/HQ/401635.pdf - (November, 2021)
Cadmium							
	ACGIH	TLV (TWA)	(total)	10	μg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	ACGIH	TLV (TWA)	(respirable)	2	μg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	OSHA	PEL (TWA)		5	μg/m³		https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	EPA	ATSDR	Noncancer - Cd Compounds	0.01	μg/m³	Chronic	https://www.epa.gov/sites/production/files/2014-05/documents/table1.pdf
	EPA	IRIS	Cancer - Cd Compounds	2	μg/m³	Chronic	https://www.epa.gov/sites/production/files/2014-05/documents/table1.pdf
	EPA	MRL	Cd Compounds	0.03	μg/m³	Acute	
	EPA	AEGL-1 (1-hr)	Cd Compounds	100	μg/m³	1-Hour	https://www.epa.gov/sites/production/files/2014-05/documents/table2.pdf
	EPA	AEGL-1 (8-hr)	Cd Compounds	41	μg/m³	8-Hour	https://www.epa.gov/sites/production/files/2014-05/documents/table2.pdf
	EPA	RfC	Cd (water)	0.01	μg/m³	Life-time	https://semspub.epa.gov/work/HQ/401635.pdf - (November, 2021)
	EPA	RSL: TR @ 10 ⁻⁶	Cd (water) (Cancer Risk)	1.60	ng/m³	Life-time	https://semspub.epa.gov/work/HQ/401635.pdf - (November, 2021)
	EPA	RSL: HI = 1	Cd (water) (Noncancer Risk)	10	ng/m³	HI=1	https://semspub.epa.gov/work/HQ/401635.pdf - (November, 2021)
Copper							
	ACGIH	TLV (TWA)	(dust & mist)	1,000	μg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	NIOSH	REL (TWA)		1,000	μg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	OSHA	PEL (TWA)		1,000	μg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
Lead (Pb)					. 3		
	ACGIH	TLV (TWA)	(inorganic)	50	μg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	NIOSH	REL (TWA)	(inorganic+ organic salts)	50	μg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	OSHA	PEL (TWA)	(inorganic)	50	μg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	EPA	NAAQS		0.150	μg/m³	3-month mean	40 CFR 50.12 (and Appendix R)
	NIOSH	IGHL/10	Lead compounds	10	mg/m³		https://www.epa.gov/sites/production/files/2014-05/documents/table2.pdf
	EPA	RSL: HI = 1	Pb (Noncancer Risk)	0.15	μg/m³	HI=1	https://semspub.epa.gov/work/HQ/401635.pdf - (November, 2021)
/langanese							
	ACGIH	TLV (TWA)	(compounds + fumes)	20	μg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	NIOSH	REL (TWA)	(compounds + fumes)	1,000	μg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	OSHA	PEL (TWA)	(compounds + fumes)	5,000	μg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
	ATSDR	Screen for Risk Assessment	Noncancer - Mn Compounds	0.30	μg/m³	Chronic	https://www.epa.gov/sites/production/files/2014-05/documents/table2.pdf
	NIOSH	IGHL/10	Manganese compounds	50	mg/m³		https://www.epa.gov/sites/production/files/2014-05/documents/table2.pdf
		TEEL-1	MnO, MO ₂ & MnSO ₄	4.7	mg/m³	1-Hour	https://www.epa.gov/sites/production/files/2014-05/documents/table2.pdf
	EPA	RSL: HI = 1	Mn (non-diet) (Noncancer Risk)	0.052	μg/m³	HI=1	https://semspub.epa.gov/work/HQ/401635.pdf - (November, 2021)
	EPA	RfC	Mn (non-diet)	0.05	μg/m³	Life-time	https://semspub.epa.gov/work/HQ/401635.pdf - (November, 2021)
lybdenum					, ,		
	ACGIH	TLV (TWA)	(soluble compounds)*	500	μg/m³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html
					2		
	NIOSH OSHA	REL (TWA) PEL (TWA)	(soluble compounds)* (soluble compounds)*	N/A 5,000	μg/m³ μg/m³	8-hour 8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html https://www.osha.gov/dsg/annotated-pels/tablez-1.html

Zinc (Zn)

ZN)										
	ACGIH	TLV (TWA) STEL	(zinc oxide - respirable) (zinc oxide - respirable)	2,000 10,000	μg/m³ μg/m³	8-hour 15 minutes	https://www.osha.gov/dsg/annotated-pels/tablez-1.html https://www.osha.gov/dsg/annotated-pels/tablez-1.html			
	OSHA	PEL (TWA)	(inorganic)	5,000	μg/m ³	8-hour	https://www.osha.gov/dsg/annotated-pels/tablez-1.html			
	Term	Definition								
	ACGIH	American Congress of Go	vernmental Industrial Hygienists							
	AEGL-1	Acute exposure guideline le	evels for mild effects: 1-hour and 8	8-hour						
	ATSDR	Agency for Toxic Substan	ces & Disease Registry							
	HI (EPA)	Hazardous Index: Aggrega	te exposures below a HI of 1.0 will	likely no	result in ad	verse noncancer	health effects over a lifetime of exposure. A respiratory HI greater than 1.0 can be			
			. ,				em. https://archive.epa.gov/airtoxics/nata/web/html/gloss.html			
	IDHL/10		nined by NIOSH to be imminently o	dangerou	s to life and	death.				
	IRIS	Integrated Risk Information	- /							
	NAAQS	National Ambient Air Quality Standards: 40 CFR 50.12								
	NIOSH	National Institute of Occupational Safety and Health (part of CDC)								
	PEL	Permissible Exposure Limits (expressed as 8-hour time weighted average (TWA)) 29 CFR 1910.1000 Z-1 Table Recommended exposure limit: Level at which NIOSH believes protects worker safety and health over a working lifetime.								
	REL (NIOSH)						· ·			
	REL (Ca EPA)	automatically indicate ar		aith ei ie	are anticip	atea. Includes r	nost sensitive individuals Levels exceeding REL does not			
	RfC	Reference Concentration	(EPA) is an estimate (with uncert	ainty spa	nning perha	os an order of ma	egnitude)			
		of a continuous inhalation	n exposure to the human population	on (includ	ing sensitive	subgroups) that	is likely			
		to be without an apprecia	ble risk of deleterious effects durin	g a lifetir	n https://www	.epa.gov/sites/defa	ault/files/2015-08/documents/technical_appendix_a_toxicity_v2_3_3.pdf			
	RSL	Residential Regional Screen	ening Level (EPA Region X) @ 10	⁶ Cancer	Risk or (Nor	cancer) Hazardo	ous Index (HI) = 1 (based on Hazard Quotient (HQ) of 1.			
		https://semspub.epa.gov/	work/HQ/401635.pdf Last (EPA) T	able Up	date: Novem	ber 2021				
	STEL	Short-Term Exposure Lim	it (15-minutes)							
	TEEL-1	Temporary emergency exp	osure limits for mild transient effe	cts for 1-	hour exposui	re				
	TLV	Threshold Limit Value								
	TWA	Time Weighted Average								
	WHO	World Health Organizatio	n							

APPENDIX E: CALIBRATIONS

BGI PQ200 TSP Sampler – Monthly Calibration Checks								
	Time: 1026 -							
Date: 07/18/2024	1044 MST	Sampler Serial Number: 90133						
Performed By: Steve He	Performed By: Steve Heck Location (field or lab): Pine St							
Ref Standard & S/N:	_	Certification Date:						
1) Delta Cal S/N 128		1) 01-03-2024						
В	arometric Pressure	Sensor Verification	D:#					
Dooding	Compler	Deference Standard	Difference (a - b)					
Reading (mm Hg)	Sampler (a)	Reference Standard (b)	(a - b) (must be ≤ ± 10)					
Ambient Pressure	627 mm Hg	626.9 mmHg	+0.1					
	Temperature Ser	nsor Verification	<u> I </u>					
			Difference					
Reading	Sampler	Reference Standard	(a - b)					
(degrees Celsius)	(a)	(b)	(must be ≤ ± 2°C)					
Ambient Temperature	27.3 C	28.1 C	-0.8 C					
Filter Temperature	29.5 C	28.8 C	+0.7 C					
Leak Check								
Vacuum Readings	Doos Foil							
(cm H ₂ O)	145	145	Pass Fail					
	Flow Rate V	/erification						
			% Difference					
Reading	Sampler	Reference Standard	100*(a - b)/b					
(liters per minute)	(a)	(b)	(must be ≤ ± 4%)					
Operating flow rate check	16.7	16.87	-1.0%					
	Reference	Design Flow Rate	% Difference					
Reading	Standard	Standard	100*(b–16.7)/16.7 (must be ≤ ± 5%)					
(liters per minute) Design flow rate	(b)	(c)	,					
calculation	16.87	16.7	+1.0%					

BGI PQ2	00 TSP Sampler – N	Monthly Calibration Ch	ecks					
Date: 08/20/2024	Time: 1215 - 1245 MST	Sampler Serial Number: 90133						
Performed By: Steve He	ck	Location (field or lab):	Pine St					
Ref Standard & S/N: 1) Delta Cal S/N 128	38	Certification Date: 1) 01-03-2024						
В	arometric Pressure	Sensor Verification						
Reading (mm Hg)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 10)					
Ambient Pressure	624 mm Hg	623.9 mmHg	+0.1					
	Temperature Sen	sor Verification						
Reading (degrees Celsius)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 2°C)					
Ambient Temperature	28.2 C	28.8 C	-0.6 C					
Filter Temperature	30.8 C	30.3 C	+0.5 C					
	Leak C	heck						
Vacuum Readings (cm H ₂ O)	Start 142	End 141	Pass Fail					
	Flow Rate V	erification						
Reading (liters per minute)	Sampler (a)	Reference Standard (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)					
Operating flow rate check	16.7	16.82	-0.7%					
Reading (liters per minute)	Reference Standard (b)	Design Flow Rate Standard (c)	% Difference 100*(b–16.7)/16.7 (must be ≤ ± 5%)					
Design flow rate calculation	16.82	16.7	+0.7%					

No adjustments made

Checked recertified Swift 25.0 Meter. Flow was 13.57 $\underline{\text{Standard}}$ LPM / 16.74 $\underline{\text{Actual}}$ LPM Assume STP at 760 mmHg and 25.0 deg C

BGI PQ20	00 TSP Sampler – N	Monthly Calibration Ch	ecks		
Date: 09/30/2024	Time: 1455 - 1515 MST	Sampler Serial Number: 90133			
Performed By: Steve He	ck	Location (field or lab):	Pine St		
Ref Standard & S/N: 1) Delta Cal S/N 128	38	Certification Date: 1) 01-03-2024			
Ва	arometric Pressure	Sensor Verification			
Reading (mm Hg)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 10)		
Ambient Pressure	630 mm Hg	629.4 mmHg	+0.6		
	Temperature Sen	sor Verification			
Reading (degrees Celsius)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 2°C)		
Ambient Temperature	12.8 C	12.9 C	-0.1 C		
Filter Temperature 15.6 C		16.6 C	-1.0 C		
	Leak C	heck			
Vacuum Readings (cm H ₂ O)	Start 140	End 140	Pass Fail		
	Flow Rate V	erification			
Reading (liters per minute)	Sampler (a)	Reference Standard (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)		
Operating flow rate check	16.7	16.30	+2.5%		
Reading (liters per minute)	Reference Standard (b)	Design Flow Rate Standard (c)	% Difference 100*(b–16.7)/16.7 (must be ≤ ± 5%)		
Design flow rate calculation	16.30	16.7	-2.4%		

Performed multipoint calibration following performance audit on same date

- @ 15.0 LPM = 15.02 @ 18.4 LPM = 18 03 @ 16.7 LPM = 16.69 Operating flow rate verification = 16.67 LPM

BGI PQ2	BGI PQ200 TSP Sampler – Monthly Calibration Checks								
Date: 10/11/2024	Time: 1325 - 1400 MST	Sampler Serial Number: 90133							
Performed By: Steve He	erformed By: Steve Heck Location (field or lab): Pine St								
Ref Standard & S/N: 1) Delta Cal S/N 128	38	Certification Date: 1) 01-03-2024							
В	arometric Pressure	Sensor Verification							
Reading (mm Hg)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 10)						
Ambient Pressure	625 mm Hg	624.9 mmHg	+0.1						
	Temperature Sei	nsor Verification							
Reading (degrees Celsius)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 2ºC)						
Ambient Temperature	19.7 C	20.3 C	-0.6 C						
Filter Temperature	22.7 C	21.9 C	+0.8 C						
Leak Check									
Vacuum Readings (cm H₂O)	Pass Fail								
	Flow Rate \	/erification							
Reading (liters per minute)	Sampler (a)	Reference Standard (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)						
Operating flow rate check	16.7	16.99	-1.7%						
Reading (liters per minute)	Reference Standard (b)	Design Flow Rate Standard (c)	% Difference 100*(b–16.7)/16.7 (must be ≤ ± 5%)						
Design flow rate calculation	16.99	16.7	+1.7%						
	16.99	16.7	+1.						

BGI PQ20	00 TSP Sampler –	Monthly Calibration Ch	ecks	
Date: 07/18/2024	Time: 1143 – 1158 MST	Sampler Serial Number: 90129		
Performed By: Steve He	ck	Location (field or lab):	Walnut St	
Ref Std: Delta Cal S/N 1	288	Certification Date: 01/0	03/2024	
Ва	arometric Pressure	Sensor Verification		
Reading (mm Hg) Ambient Pressure	Sampler (a) 628	Reference Standard (b) 626.9	Difference (a - b) $(must be \le \pm 10)$ +1.1	
	Temperature Se	nsor Verification		
Reading (degrees Celsius)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 2°C)	
Ambient Temperature	30.5 C	31.7 C	-1.2	
Filter Temperature	32.7 C	32.3 C	+0.4	
	Leak (Check		
Vacuum Readings (cm H ₂ O)	Start 142	End 141	Pass Fail	
	Flow Rate	Verification		
Reading (liters per minute)	Sampler (a)	Reference Standard (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)	
Operating flow rate check	16.7	16.91	-1.2%	
Reading (liters per minute) Design flow rate calculation	Reference Standard (b) 16.91	Design Flow Rate Standard (c) 16.7	% Difference 100*(b–16.7)/16.7 (must be ≤ ± 5%) +1.3%	

BGI PQ20	00 TSP Sampler – N	Ionthly Calibration Ch	ecks				
Date: 08/20/2024 Time: 1337 – 1400 MST		Sampler Serial Number: 90129					
Performed By: Steve He	ck	Location (field or lab): \	Walnut St				
Ref Std: Delta Cal S/N 1	288	Certification Date: 01/0	3/2024				
Barometric Pressure Sensor Verification							
Reading (mm Hg)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 10)				
Ambient Pressure	625	623.9	+1.1				
	Temperature Sensor Verification						
Reading (degrees Celsius)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 2°C)				
Ambient Temperature	28.1 C	29.4 C	-1.3				
Filter Temperature	30.8 C	31.4 C	-0.6				
	Leak C	heck					
Vacuum Readings (cm H₂O)	Start 140	End 139	Pass Fail				
	Flow Rate V	erification					
Reading (liters per minute)	Sampler (a)	Reference Standard (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)				
Operating flow rate check	16.7	16.79	-0.5%				
Reading (liters per minute)	Reference Standard (b)	Design Flow Rate Standard (c)	% Difference 100*(b–16.7)/16.7 (must be ≤ ± 5%)				
Design flow rate calculation	16.79	16.7	+0.5%				

No adjustments made

Checked recertified Swift 25.0 Meter. Flow was 13.50 $\underline{\text{Standard}}$ LPM / 16.62 $\underline{\text{Actual}}$ LPM Assume STP at 760 mmHg and 25.0 deg C

BGI PQ20	00 TSP Sampler – N	Monthly Calibration Ch	ecks	
Date: 09/30/2024	Time: 1548 - 1610	Sampler Serial Number: 90129		
Performed By: Steve He	ck	Location (field or lab): \	Walnut St	
Ref Std: Delta Cal S/N 1	288	Certification Date: 01/0	3/2024	
Ва	arometric Pressure	Sensor Verification		
Reading (mm Hg)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 10)	
Ambient Pressure	631	630.4	+0.6	
	Temperature Ser	sor Verification		
Reading (degrees Celsius)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 2°C)	
Ambient Temperature	13.4 C	13.8 C	-0.4	
Filter Temperature	15.0 C	14.7 C	+0.3	
	Leak C	Check		
Vacuum Readings (cm H₂O)	Start 138	End 137	Pass Fail	
	Flow Rate V	/erification		
Reading (liters per minute)	Sampler (a)	Reference Standard (b)	% Difference 100*(a – b)/b (must be ≤ ± 4%)	
Operating flow rate check	16.7	16.55	+0.9%	
Reading (liters per minute)	Reference Standard (b)	Design Flow Rate Standard (c)	% Difference 100*(b–16.7)/16.7 (must be ≤ ± 5%)	
Design flow rate calculation	16.55	16.7	-0.9%	

BGI PQ20	<u> </u>	Monthly Calibration Ch	ecks				
Date: 10/11/2024 Time: 1415 – 1445		Sampler Serial Number: 90129					
Performed By: Steve He	ck	Location (field or lab): \	Walnut St				
Ref Std: Delta Cal S/N 1	288	Certification Date: 01/0	3/2024				
Barometric Pressure Sensor Verification							
Reading (mm Hg)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 10)				
Ambient Pressure	627	625.4	+1.6				
	Temperature Ser	sor Verification					
Reading (degrees Celsius)	Sampler (a)	Reference Standard (b)	Difference (a - b) (must be ≤ ± 2°C)				
Ambient Temperature	20.3 C	20.9 C	-0.6				
Filter Temperature	22.0 C	21.6 C	+0.4				
	Leak C	Check					
Vacuum Readings (cm H ₂ O)	Start 141	End 139	Pass Fail				
	Flow Rate V	/erification					
Reading (liters per minute)	Sampler (a)	Reference Standard (b)	% Difference 100*(a - b)/b (must be $\leq \pm 4\%$)				
Operating flow rate check	16.7	16.65	+0.3%				
Reading (liters per minute)	Reference Standard (b)	Design Flow Rate Standard (c)	% Difference 100*(b–16.7)/16.7 (must be ≤ ± 5%)				
Design flow rate calculation	16.65	16.7	-0.3%				

APPENDIX F: CALIBRATION STANDARD CERTIFICATION SHEETS

Mesa Labs 12100 W. 6th Ave Lakewood, CO 80228

NIST Traceable Calibration Facility

CERTIFICATE OF CALIBRATION - NIST TRACEABILITY

Calibration Report #:

1288-03012024

DeltaCal Serial Number: 1288

Calibration Technician: Elsy Lasky

Date: 3-Jan-2024

Recommended Recal Date: 3-Jan-2025

Critical Venturi Flow Meter

Max Uncertainty = 0.346%

TE20005

6 - 30.00 LPM

Calibration Due:

1-Aug-2024

TE20007

1.40 - 6.0 LPM

Calibration Due:

2-Aug-2024

Room Temperature: +- 0.03°C from -5°C - 70°C Room Temperature:

22.90 °C

Brand:

Eutechnics

TE Number:

TE12348

Serial Number:

A11146

Std Cal Date:

29-Sep-23

Std Cal Due Date:

29-Sep-24

Ambient Temperature (set):

23.0 °C

Aux (filter) Temperature (set):

23.0 °C

Barometric and Absolute Pressure

Vaisala Model PTB330 (50-1100) Digital Accuracy: 0.03371%

TE Number:

TE12311

Serial Number:

H0850001

Std Cal Date:

6-Aug-23

Std Cal Due Date:

6-Aug-24

DeltaCal:

Barometric pressure (set):

616.00 mmHg

Results of Venturi Calibration

Flow Rate (Q) vs. Pressure Drop (ΔP).

Where: Q=Lpm, Δ P= Cm of H2O

Venturi

TE20005 TE20007 Q = 4.02226Q= 3.95205

ΔP ^ ΔP ^

0.51536 0.52799

Overall Uncertainty: 0.35% Overall Uncertainty: 0.35%

Mesa Labs 12100 W. 6th Ave Lakewood, CO 80228

NIST Traceable Calibration Facility

As Shipped Calibration Data for DeltaCal

Unit Type: DC 1

Flow Range: 1.5-19.5 LPM

Serial No.: 1288

Firmware Version: 4.00P

Date	Technician
03Jan2024	Elsy Lasky

Ambient Pressure: 616.2 mmHg
Ambient Temperature: 22.9 °C

R	ange 1	Test	Static Pressure	Barometric Pressure	Venturi Qa	DUT Qa	% error
Venturi	TE20005	#	mmHg	mmHg	LPM	LPM	%
Туре	1B	1	134.39	615.4	6.530	6.504	-0.398
Flow range	6 - 30.00 LPM	2	205.14	615.4	10.048	10.005	-0.428
		3	267.02	615.4	13.124	13.040	-0.640
		4	326.09	615.4	16.061	15.978	-0.517
		5	368.21	615.4	18.155	18.063	-0.507
		6	403.83	615.4	19.926	19.806	-0.602
	·		Maximu	m allowable	error at	Average	-0.515
			any fl	ow rate is 0	.75%.	Result	PASS

R	ange 2	Test	Static Pressure	Barometric Pressure	Venturi Qa	DUT Qa	% error
Venturi	TE20007	#	mmHg	mmHg	LPM	LPM	%
Туре	2B	1	139.56	615.9	1.941	1.953	0.618
Flow range	1.40 - 6.0 LPM	2	206.07	615.9	2.895	2.908	0.449
		3	261.31	615.9	3.687	3.713	0.705
		4	322.98	615.9	4.571	4.569	-0.044
		5	371.60	615.9	5.268	5.248	-0.380
		6	417.85	615.9	5.931	5.904	-0.455
			Maximui	n allowable	error at	Average	0.149
			any flo	ow rate is 0	.75%.	Result	PASS

Performed By: Elsy Lasky

Date: 3-Jan-2024

Approved By:

Date: 03JAN2014

Mesa Labs 12100 W. 6th Ave Lakewood, CO 80228

NIST Traceable Calibration Facility

As-Found data for DeltaCal

Unit Type: DC 1
Flow Range: 1.5-19.5 LPM
Serial No.: 1288

Firmware Version: 4.00P

Date	Technician
03Jan2024	Elsy Lasky

Ambient Pressure: 616.2 mmHg
Ambient Temperature: 22.9 °C

	As Re	As Received Temp. Press. Calibration				As Shipped Temp. Press. Calibration		
	DUT	Standard	Diff	+/- 1 mmHg	DUT	Standard	Diff	+/-1 mmHg
Pres _{AMB} mmHg	618	617.9	0.1	Pass	615.9	616.2	-0.3	Pass
	DUT	Standard	Diff	+/- 1 °C	DUT	Standard	Diff	+/- 1 °C
Temp _{AMB} °C	22.5	22.5	0	Pass	23	22.9	0.1	Pass
Temp Filter °C	22.5	22.5	0	Pass	23	22.9	0.1	Pass
	Offset	New Offset						,
Presamb	3	2.9						
Гетрамв	0	0						
Temp Filter	0	0						

F	Range 1	T	Static	Barometric	ı		
		Test	Pressure	Pressure	Venturi Qa	DUT Qa	% error
Venturi	TE20005	#	mmHg	mmHg	LPM	LPM	%
Туре	1B	1	134.61	616.0	6.533	6.499	-0.520
Flow range	6 - 30.00 LPM	2	204.39	616.0	9.997	9.938	-0.590
		3	264.52	616.0	12.983	12.893	-0.693
		4	326.16	616.0	16.043	15.927	-0.723
		5	369.74	616.0	18.208	18.082	-0.692
		6	404.37	616.0	19.927	19.820	-0.537
			Maximu	m allowable	error at	Average	-0.626
			any fl	ow rate is 0	.75%.	Result	PASS

Range 2		Test	Static Pressure	Barometric Pressure	Venturi Qa	DUT Qa	% error
Venturi	TE20007	#	mmHg	mmHg	LPM	LPM	%
Туре	2B	1	139.22	616.0	1.935	1.952	0.879
Flow range	1.40 - 6.0 LPM	2	200.99	616.5	2.818	2.814	-0.142
		3	267.78	616.5	3.775	3.782	0.185
		4	318.96	616.5	4.507	4.505	-0.044
		5	370.03	616.5	5.239	5.244	0.095
		6	422.60	616.5	5.992	5.995	0.050
			Maximu	n allowable	error at	Average	0.171
			any flo	ow rate is 0	.75%.	Result	FAIL

Met One Instruments, Inc.

1600 NW Washington Blvd • Grants Pass, OR 97526 • (541) 471-7111 • www.metone.com

Certificate of Calibration Model Swift 25.0

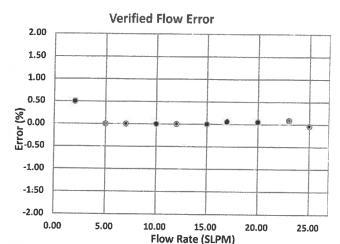
Serial Number: D16202

Calibrated Date: 7/15/2024

Firmware: R0.2.0.5a

Calibrated By: A.Schultz

As Left


X

As Found

	Verified	Flow Data Points		
Standard (SLPM)	Swift 25.0 (SLPM)	Acceptable Range	In Tolerance	
2	2.01	1.98 - 2.02	Pass	
5	5.00	4.95 - 5.05	Pass	
7	7.00	6.93 - 7.07	Pass	
10	10.00	9.90 - 10.10	Pass	
12	12.00	11.88 - 12.12	Pass	
15	15.00	14.85 - 15.15	Pass	
17	17.01	16.83 - 17.17	Pass	
20	20.01	19.80 - 20.20	Pass	
23	23.02	22.77 - 23.23	Pass	
25	24.99	24.75 - 25.75	Pass	

Standard	Swift 25.0	In
(SLPM)	(SLPM)	Tolerance
22.72	22.72	Pass

Standard	Swift 25.0	In	
(°C)	(°C)	Tolerance	
22.84	22.91	Pass	

Standard	Swift 25.0	In
(mbar)	(mbar)	Tolerance
974.2	975.0	Pass

Standard	Swift 25.0	In
(RH%)	(RH%)	Tolerance
41	38	Pass

Calibration Procedure: Swift 25.0-6100

Recommended Calibration Interval: 12 months from the first day of use

Standards	Model	SN	Cal Due
Air Flow Meter	M-50SLPM-D	432090	2/26/2025
Rotronics	HC2-S3	61082036	9/7/2024
BAROMETRIC PRESSURE	597	Y13061	5/20/2025

This instrument has been tested and calibrated to meet the manufacturer's published specifications at an ISO-9001 certified facility. The standards used for the calibration are on record and traceable to the National Institute of Standards and Technology (NIST) and have accuracies equal to or greater than the instrument being tested. The calibration system complies with MIL-STD-45662A. Complete test records for each unit are maintained by Met One Instruments, Inc. and are available upon request.